Skip to main content
Log in

Nonquasineutral relativistic current filaments and their X-ray emission

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Nonquasineutral electron current filaments with the azimuthal magnetic field are considered that arise due to the generation of electron vorticity in the initial (dissipative) stage of evolution of a current-carrying plasma, when the Hall number is small (σB/en e c ≪ 1) because of the low values of the plasma conductivity and magnetic field strength. Equilibrium filamentary structures with both zero and nonzero net currents are considered. Structures with a zero net current type form on time scales of t < t sk = (r 0ω pe /c)2 t st, where t sk is the skin time, t st is the typical time of electron-ion collisions, and r 0 is the radius of the filament. It is shown that, in nonquasineutral filaments in which the current is carried by electrons drifting in the crossed electric (E r ) and magnetic (B θ) fields, ultrarelativistic electron beams on the typical charge-separation scale r B = B/(4πen e ) (the so-called magnetic Debye radius) can be generated. It is found that, for comparable electron currents, the characteristic electron energy in filaments with a nonzero net current is significantly lower than that in zero-net-current filaments that form on typical time scales of t < t sk. This is because, in the latter type of filaments, the oppositely directed electron currents repel one another; as a result, both the density and velocity of electrons increase near the filament axis, where the velocities of relativistic electrons are maximum. Filaments with a zero net current can emit X rays with photon energies ℏ ω up to 10 MeV. The electron velocity distributions in filaments, the X-ray emission spectra, and the total X-ray yield per unit filament length are calculated as functions of the current and the electron number density in the filament. Analytical estimates of the characteristic lifetime of a radiating filament and the typical size of the radiating region as functions of the plasma density are obtained. The results of calculations are compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Koshelev and N. R. Pereira, J. Appl. Phys. 69, 21 (1991).

    Article  ADS  Google Scholar 

  2. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).

    Article  ADS  Google Scholar 

  3. T. A. Shelkovenko, S. A. Pikuz, B. M. Song, et al., Phys. Plasmas 12, 033102 (2005).

    Google Scholar 

  4. A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 31, 30 (2005) [Plasma Phys. Rep. 31, 26 (2005)].

    Google Scholar 

  5. J. Sakai, S. Saito, H. Mae, et al., Phys. Plasmas 9, 2959 (2002).

    Article  ADS  Google Scholar 

  6. A. V. Gordeev and S. V. Levchenko, Pis’ma Zh. Éksp. Teor. Fiz. 67, 461 (1998) [JETP Lett. 67, 482 (1998)].

    Google Scholar 

  7. A. V. Gordeev and T. V. Losseva, Pis’ma Zh. Éksp. Teor. Fiz. 70, 669 (1999) [JETP Lett. 70, 684 (1999)].

    Google Scholar 

  8. A. V. Gordeev, Fiz. Plazmy 32, 999 (2006) [Plasma Phys. Rep. 32, 921 (2006)].

    Google Scholar 

  9. A. V. Gordeev and T. V. Losseva, Fiz. Plazmy 29, 809 (2003) [Plasma Phys. Rep. 29, 748 (2003)].

    Google Scholar 

  10. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  11. H. Alfvén, Phys. Rev. 55, 425 (1939).

    Article  MATH  ADS  Google Scholar 

  12. T. G. Roberts and W. H. Bennet, Plasma Phys. Controlled Fusion 10, 381 (1968).

    Google Scholar 

  13. J. L. Cox and W. H. Bennett, Phys. Fluids 13, 182 (1970).

    Article  ADS  Google Scholar 

  14. A. A. Ivanov and L. I. Rudakov, Zh. Éksp. Teor. Fiz. 58, 1332 (1970) [Sov. Phys. JETP 31, 715 (1970)].

    Google Scholar 

  15. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).

    Google Scholar 

  16. E. W. Weibel, Phys. Rev. Lett 2, 83 (1959).

    Article  ADS  Google Scholar 

  17. A. A. Frolov, Fiz. Plazmy 30, 750 (2004) [Plasma Phys. Rep. 30, 698 (2004)].

    Google Scholar 

  18. S. V. Bulanov, F. Califano, G. I. Dudnikova, et al., in Reviews of Plasma Physics, Ed. by V. D. Shafranov (Kluwer Academic, New York, 2001), Vol. 22. p. 227.

    Google Scholar 

  19. H. Ertel, Meteorolog. Z. 59, 277 (1942).

    Google Scholar 

  20. S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, and V. V. Yanovskii, Dokl. Akad. Nauk SSSR 258, 318 (1981) [Sov. Phys. Dokl. 26, 479 (1981))].

    MathSciNet  Google Scholar 

  21. K. Elsässer, Phys. Plasmas 1, 3161 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].

    Article  Google Scholar 

  23. A. V. Gordeev, Fiz. Plazmy 32, 847 (2006) [Plasma Phys. Rep. 32, 780 (2006)].

    Google Scholar 

  24. A. V. Gordeev, Fiz. Plazmy 27, 815 (2001) [Plasma Phys. Rep. 27, 769 (2001)].

    Google Scholar 

  25. A. V. Gordeev, Fiz. Plazmy 27, 251 (2001) [Plasma Phys. Rep. 27, 235 (2001)].

    MathSciNet  Google Scholar 

  26. L. I. Rudakov, M. V. Babykin, A. V. Gordeev, et al., in Generation and Focusing of High-Current Relativistic Electron Beams, Ed. by L. I Rudakov (Énergoatomizdat, Moscow, 1990), p. 112 [in Russian].

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  28. T. A. Shelkovenko, S. A. Pikuz, A. R. Mingaleev, et al., Fiz. Plazmy 34, 816 (2008) [Plasma Phys. Rep. 34, 754 (2008)].

    Google Scholar 

  29. A. V. Gordeev and T. V. Losseva, in Proceedings of the 5th International Conference on Dense Z-Pinches, Melville, NY, 2002, AIP Conf. Proc. 651, 420 (2002).

  30. A. V. Gordeev, XXXV International Zvenigorod Conference on Plasma Physics and Controlled Nuclear Fusion, Zvenigorod, 2008, Abstracts of Papers, p. 115.

  31. A. V. Gordeev and T. V. Losseva, XXXV International Zvenigorod Conference on Plasma Physics and Controlled Nuclear Fusion, Zvenigorod, 2008, Abstracts of Papers, p. 167.

  32. A. V. Gordeev and T. V. Losseva, 17th International Conference on High-Power Particle Beams, Xi’an, 2008, Conference Guide and Abstracts, p. 6.

  33. A. V. Gordeev, Preprint No. 6398/6 (Kurchatov Inst., Moscow, 2006).

  34. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, et al., Phys. Plasmas 9, 2165 (2002).

    Article  ADS  Google Scholar 

  35. G. V. Ivanenkov, V. Stepniewski, and S. Yu. Gus’kov, Fiz. Plazmy 34, 675 (2008) [Plasma Phys. Rep. 34, 619 (2008)].

    Google Scholar 

  36. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transfer 71, 581 (2001).

    Article  ADS  Google Scholar 

  37. V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, et al., Phys. Plasmas 10, 2519 (2003).

    Article  ADS  Google Scholar 

  38. A. V. Gordeev, A. S. Kingsep, and L. I. Rudakov, Phys. Rep. 243, 215 (1994).

    Article  ADS  Google Scholar 

  39. S. S. Anan’ev, Yu. L. Bakshaev, P. L. Blinov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 87, 426 (2008) [JETP Lett. 87, 364 (2008)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Gordeev, T.V. Losseva, 2009, published in Fizika Plazmy, 2009, Vol. 35, No. 2, pp. 141–160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordeev, A.V., Losseva, T.V. Nonquasineutral relativistic current filaments and their X-ray emission. Plasma Phys. Rep. 35, 118–135 (2009). https://doi.org/10.1134/S1063780X09020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X09020044

PACS numbers

Navigation