Skip to main content
Log in

2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator

  • Particle Acceleration in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from numerical particle simulations of the transport and acceleration of a high-current tubular ion beam through one to five magnetically insulated accelerating gaps. The ion beam is neutralized by an accompanying electron beam. The possibility of transporting a high-current neutralized ion beam through five cusps is demonstrated. It is shown that the quality of the distribution function of a high-current ion beam at the exit from the accelerator can be substantially improved by optimizing the energy of the neutralizing electron beam. It is also shown that, by injecting additional high-current electron beams into the cusps, the accelerated ion beam can be made more monoenergetic and its divergence can be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inertial Confinement Fusion: Current State and Prospects for Power Engineering, Ed. by B. Yu. Sharkov (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  2. O. V. Batishchev, V. I. Golota, V. I. Karas’, et al., Fiz. Plazmy 19, 611 (1993) [Plasma Phys. Rep. 19, 313 (1993)].

    Google Scholar 

  3. B. Sharkov, D. Koshkarev, and M. Churasov, Nucl. Instrum. Methods Phys. Res. A 415, 20 (1998).

    Article  Google Scholar 

  4. R. O. Bangerter, Preprint No. LBL-33798 (Lawrence Berkeley Laboratory, Berkeley, CA, 1993).

  5. A. Friedman, R. O. Bangerter, and W. B. Herrmannsfeld, Preprint No. UCRL-JC-117332 (Lawrence Livermore National Laboratory, Livermore, CA, 1994).

  6. J. Barnard, R. Bangerter, A. Faltens, et al., Nucl. Instrum. Methods Phys. Res. A 415, 218 (1998).

    Article  Google Scholar 

  7. S. S. Yu, W. R. Meier, R. P. Abbott, et al., Preprint No. UCRL-JC-150169-REV-1 (Lawrence Livermore National Laboratory, Livermore, CA, 2002).

  8. Yu. E. Kolyada, E. A. Kornilov, Ya. B. Fainberg, and V. A. Kiyashko, Pis’ma Zh. Tekh. Fiz. 2, 916 (1976) [Sov. Tech. Phys. Lett. 2, 359 (1976)].

    Google Scholar 

  9. V. A. Kiyashko, Yu. E. Kolyada, E. A. Kornilov, and Ya. B. Fainberg, Pis’ma Zh. Tekh. Fiz. 3, 1257 (1977) [Sov. Tech. Phys. Lett. 3, 519 (1977)].

    Google Scholar 

  10. V. A. Kiyashko, E. A. Kornilov, and V. A. Vinokurov, Vopr. At. Nauki Tekh., Ser. Tekh. Fiz. Eksp., No. 3, 21 (1987).

  11. V. I. Karas’, V. A. Kiyashko, E. A. Kornilov, and Ya. B. Fainberg, Nucl. Instrum. Methods Phys. Res. A 278, 245 (1989).

    Article  ADS  Google Scholar 

  12. V. I. Karas’, E. A. Kornilov, and Ya. B. Fainberg, Vopr. At. Nauki Tekh., Ser. Plazm. Élektron. Nov. Metody Uskor., No. 1, 101 (1998).

  13. A. I. Morozov and S. V. Lebedev, Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1974; Consultants Bureau, New York, 1980), Vol. 8.

    Google Scholar 

  14. V. I. Karas’, V. V. Mukhin, V. E. Novikov, and A. M. Naboka, Fiz. Plazmy 13, 494 (1987) [Sov. J. Plasma Phys. 13, 281 (1987)].

    Google Scholar 

  15. W. Peter and N. Rostoker, Phys. Fluids 25, 730 (1982).

    Article  MATH  ADS  Google Scholar 

  16. N. G. Belova, V. I. Karas’, and Yu. S. Sigov, Fiz. Plazmy 16, 209 (1990) [Sov. J. Plasma Phys. 16, 115 (1990)].

    Google Scholar 

  17. N. G. Belova and V. I. Karas’, Fiz. Plazmy 21, 1065 (1995) [Plasma Phys. Rep. 21, 1005 (1995)].

    Google Scholar 

  18. V. I. Karas’ and N. G. Belova, Fiz. Plazmy 23, 355 (1997) [Plasma Phys. Rep. 23, 328 (1997)].

    Google Scholar 

  19. C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991).

    Article  ADS  Google Scholar 

  20. O. V. Manuilenko and K. M. Minaeva, Problems At. Sci. Technol., Ser. Plasma Electron. New Methods Accelerat., No. 5, 116 (2006).

  21. O. V. Manuilenko, K. M. Minaeva, and V. I. Golota, Problems At. Sci. Technol., Ser. Plasma Phys., No. 6, 228 (2006).

  22. J. K. Lee, N. Y. Babaeva, H. C. Kim, et al., IEEE Trans. Plasma Sci. 32, 47 (2004).

    Article  ADS  Google Scholar 

  23. J. K. Lee, O. V. Manuilenko, N. Y. Babaeva, et al., Plasma Sources Sci. Technol. 14, 89 (2005).

    Article  ADS  Google Scholar 

  24. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985; Énergoatomizdat, Moscow, 1989).

    Google Scholar 

  25. K. S. Yee, IEEE Trans. Antenna Propagat. 14, 302 (1966).

    Article  ADS  Google Scholar 

  26. A. B. Langdon, Comp. Phys. Comm. 70, 447 (1992).

    Article  ADS  Google Scholar 

  27. P. J. Mardahl and J. P. Verboncoeur, Comp. Phys. Comm. 106, 219 (1997).

    Article  MATH  ADS  Google Scholar 

  28. R. L. Morse and S. W. Nielson, Phys. Fluids 14, 830 (1971).

    Article  ADS  Google Scholar 

  29. J. Villasenor and O. Buneman, Comp. Phys. Comm. 69, 306 (1992).

    Article  ADS  Google Scholar 

  30. J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87, 199 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Bogdan, V.I. Karas’, E.A. Kornilov, O.V. Manuilenko, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 8, pp. 725–735.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, O.V., Karas’, V.I., Kornilov, E.A. et al. 2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator. Plasma Phys. Rep. 34, 667–677 (2008). https://doi.org/10.1134/S1063780X08080059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08080059

PACS numbers

Navigation