Skip to main content
Log in

MHD processes during the cascade development of the neck and hot spot in an X-pinch

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from two-dimensional MHD simulations of X-pinch implosion. The simulations were performed in the (r, z) and (x, y) geometries for homogeneous (dense plasma) and heterogeneous (core-corona) loads. The formation of a minidiode, the development of a neck and an X-radiating hot spot, and the influence of the plasma corona on the implosion dynamics of the dense X-pinch plasma were investigated. For through simulations, the conical neck model was used, whereas a detailed analysis of the X-ray burst was performed in the parabolic neck model. The MHD processes occurring during the implosion of oblique shock waves and the onset of instability of the plasma column were examined. It is found that, due to the quasi-periodic character of these processes, the neck compression proceeds in a cascade fashion. The plasma state in a hot spot just before the break of the neck is analyzed, and the possibility of generating fast particle beams is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, et al., Pis’ma Zh. Tekh. Fiz. 8, 1060 (1982) [Sov. Tech. Phys. Lett. 8, 456 (1982)].

    Google Scholar 

  2. D. H. Kalantar and D. A. Hammer, Phys. Rev. Lett. 71, 3806 (1993).

    Article  ADS  Google Scholar 

  3. S. A. Pikuz, T. A. Shelkovenko, V. M. Romanova, et al., Rev. Sci. Instrum. 68, 740 (1997).

    Article  ADS  Google Scholar 

  4. G. V. Ivanenkov, S. A. Pikuz, T. A. Shelkovenko, et al., Fiz. Plazmy 26, 927 (2000) [Plasma Phys. Rep. 26, 868 (2000)].

    Google Scholar 

  5. G. V. Ivanenkov, S. A. Pikuz, T. A. Shelkovenko, et al., Zh. Éksp. Teor. Fiz. 118, 539 (2000) [JETP 91, 469 (2000)].

    Google Scholar 

  6. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, and D. A. Hammer, Phys. Plasmas 8, 1305 (2001).

    Article  ADS  Google Scholar 

  7. G. V. Ivanenkov and W. Stepniewski, Fiz. Plazmy 28, 886 (2002) [Plasma Phys. Rep. 28, 814 (2002)].

    Google Scholar 

  8. G. V. Ivanenkov and W. Stepniewski, Fiz. Plazmy 26, 24 (2000) [Plasma Phys. Rep. 26, 21 (2000)].

    Google Scholar 

  9. G. V. Ivanenkov and W. Stepniewski, J. Moscow Phys. Soc. 9, 337 (1999).

    Google Scholar 

  10. T. A. Shelkovenko, S. A. Pikuz, and J. D. Douglass, IEEE Trans. Plasma Sci. 34, 2336 (2006).

    Article  ADS  Google Scholar 

  11. V. S. Imshennik and N. A. Bobrova, Dynamics of Collisional Plasmas (Énergoatomizdat, Moscow, 1997) [in Russian].

    Google Scholar 

  12. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gostaomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  13. V. F. D’yachenko and V. S. Imshennik, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1974; Consultants Bureau, New York, 1980), Vol. 8.

    Google Scholar 

  14. N. A. Bobrova and P. V. Sasorov, Fiz. Plazmy 16, 403 (1990) [Sov. J. Plasma Phys. 16, 229 (1990)].

    Google Scholar 

  15. M. M. Basko, Teplofiz. Vys. Temp. 23, 483 (1985).

    Google Scholar 

  16. Yu. V. Afanas’ev, E. N. Gamalii, and V. B. Rozanov, Tr. FIAN 132, 10 (1982).

    Google Scholar 

  17. V. M. Zhdanov, Transport Phenomena in Multicomponent Plasmas (Énergoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  18. V. Ya. Karpov, A. P. Fadeev, and G. V. Shpatakovskaya, Preprint No. 110/1982 (Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 1982).

  19. I. M. Bespalov and A. Ya. Polishchuk, Pis’ma Zh. Tekh. Fiz. 15(2), 4 (1989) [Sov. Tech. Phys. Lett. 15, 39 (1989)].

    Google Scholar 

  20. G. D. Tsakiris and K. Eidman, J. Quant. Spectr. Radiat. Transfer 38, 353 (1987).

    Article  ADS  Google Scholar 

  21. I. G. Beĭgman, L. A. Vaĭnshteĭn, and A. V. Vinogradov, Astron. Zh. 46, 985 (1969).

    ADS  Google Scholar 

  22. Ya. B. Zel’dovich and Yu. P. Raizer Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

  23. V. S. Volokitin, I. O. Golosnoi, and N. N. Kalitkin, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 4, 11 (1995) [Russ. Phys. J. 38, 336 (1995)].

  24. K. Jach, Komputerowe Modelowanie Dynamicznych Odzialywan Cial Metoda Puntkow Swobodnych (PWN, Warsaw, 2001) [in Polish].

    Google Scholar 

  25. A. G. Aksenov and A. V. Gerusov, Fiz. Plazmy 21, 14 (1995) [Plasma Phys. Rep. 21, 11 (1995)].

    Google Scholar 

  26. S. Yu. Gus’kov, G. V. Ivanenkov, and W. Stepniewski, Proc. SPIE 5974, 59740T (2005).

  27. S. Yu. Gus’kov, G. V. Ivanenkov, and W. Stepniewski, J. Phys. IV France 133, 187 (2006).

    Article  Google Scholar 

  28. V. V. Vikhrev, Pis’ma Zh. Éksp. Teor. Fiz. 27, 104 (1978) [JETP Lett. 27, 95 (1978)].

    Google Scholar 

  29. V. V. Vikhrev, V. V. Ivanov, and K. P. Koshelev, Fiz. Plazmy 8, 1211 (1982) [Sov. J. Plasma Phys. 8, 688 (1982)].

    Google Scholar 

  30. R. S. Pease, Proc. Phys. Soc. London 70, 11 (1957).

    Article  MATH  ADS  Google Scholar 

  31. S. I. Braginskii, Zh. Éksp. Teor. Fiz. 33, 645 (1957) [Sov. Phys. JETP 6, 494 (1957)].

    Google Scholar 

  32. J. W. Shearer, Phys. Fluids 19, 1426 (1976).

    Article  ADS  Google Scholar 

  33. V. V. Vikhrev and K. G. Gureev, Zh. Tekh. Fiz. 48, 2264 (1978) [Sov. Phys. Tech. Phys. 23, 1295 (1978)].

    Google Scholar 

  34. F. N. Beg, A. Ciardi, I. Ross, et al., IEEE Trans. Plasma Sci. 34, 2325 (2006).

    Article  ADS  Google Scholar 

  35. J. P. Chittenden, A. Ciardi, C. A. Jennings, et al., Phys. Rev. Lett. 98, 025 003 (2007).

    Google Scholar 

  36. A. F. Ioffe and A. R. Regel, Prog. Semicond. 41, C8 (1960).

    Google Scholar 

  37. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, et al., Phys. Plasmas 9, 2165 (2002).

    Article  ADS  Google Scholar 

  38. S. A. Pikuz, D. B. Sinars, T. A. Shelkovenko, et al., Phys. Rev. Lett. 89, 035 003 (2002).

    Google Scholar 

  39. S. V. Lebedev, A. Ciardi, D. J. Ampleford, et al., Mon. Not. R. Astron. Soc. 361, 97 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Ivanenkov, W. Stepniewski, S.Yu. Gus’kov, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 8, pp. 675–694.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanenkov, G.V., Stepniewski, W. & Gus’kov, S.Y. MHD processes during the cascade development of the neck and hot spot in an X-pinch. Plasma Phys. Rep. 34, 619–638 (2008). https://doi.org/10.1134/S1063780X08080011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08080011

PACS numbers

Navigation