Skip to main content
Log in

Conditions for electron runaway under leader breakdown of long gaps

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. N. Ul’yanov, Teplofiz. Vys. Temp. 43, 645 (2005).

    Google Scholar 

  2. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  3. D. V. Fursa and I. Bray, Phys. Rev. 52, 1279 (1995).

    Article  ADS  Google Scholar 

  4. E. Krishnakumar and S. K. Srivastava, Phys 21, 1055 (1988).

    Google Scholar 

  5. G. D. Alkhazov, Zh. Tekh. Fiz. 40, 97 (1970) [Sov. Phys. Tech. Phys. 15, 66 (1970)].

    Google Scholar 

  6. T. Iton and T. Mugha, J. Phys. Soc. Jpn. 15, 1672 (1960).

    ADS  Google Scholar 

  7. V.L. Granovskiĭ, Electric Current in a Gas (Gostekhteoretizdat, Moscow, 1952) [in Russian].

    Google Scholar 

  8. J. P. Boeuf and E. J. Marode, Phys. D 15, 2169 (1982).

    Article  ADS  Google Scholar 

  9. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Éksp. Teor. Fiz. 77, 264 (2003) [JETP Lett. 77, 221 (2003)].

    Google Scholar 

  10. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Tekh. Fiz. 29(16), 54 (2003) [Tech. Phys. Lett. 29, 683 (2003)].

    Google Scholar 

  11. J. J. Dutton, Phys. Chem. Ref. Data 4, 577 (1975).

    Article  ADS  Google Scholar 

  12. L. M. Chanin and G. D. Rork, Phys. Rev. 133, 1005 (1964).

    Article  ADS  Google Scholar 

  13. K. N. Ul’yanov and V. V. Chulkov, Zh. Tekh. Fiz. 58, 328 (1988) [Sov. Phys. Tech. Phys. 33, 201 (1988)].

    Google Scholar 

  14. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  15. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1963; Pergamon, Oxford, 1977).

    Google Scholar 

  17. K. N. Ul’yanov, Teplofiz. Vys. Temp. 4, 339 (1993).

    Google Scholar 

  18. Ya. B. Zel’dovich and Yu. P. Raizer Elements of Gas Dynamics and the Classical Theory of Shock Waves (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.N. Ul’yanov, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 4, pp. 367–373.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ul’yanov, K.N. Conditions for electron runaway under leader breakdown of long gaps. Plasma Phys. Rep. 34, 331–337 (2008). https://doi.org/10.1134/S1063780X08040107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08040107

PACS numbers

Navigation