Plasma Physics Reports

, Volume 34, Issue 2, pp 128–134 | Cite as

Triple splitting of a thin current sheet: A new type of plasma equilibrium

  • A. A. Bykov
  • L. M. Zelenyi
  • Kh. V. Malova
Space Plasma


A hybrid numerical model of a one-dimensional current sheet in the Earth’s magnetotail is used to calculate a new self-consistent equilibrium state in the form of a triply split current sheet composed of three thin subsheets that are located close to each other and whose thickness is on the order of the ion gyroradius. The current in the central subsheet flows in the negative direction, opposite to the direction of the currents in the side subsheets. The magnetic field of the triply split current sheet has three neutral planes, in contrast to that of a classical bell-shaped current sheet with a single neutral plane at the sheet center. The particle dynamics in a triply split current configuration is analyzed. It is shown that, within the sheet, the current carriers—untrapped ions—move along meandering trajectories and can maintain an equilibrium structure self-consistently. It is found that a triply split current sheet is stable against external perturbations. The results obtained can help to explain complex dynamic processes occurring in the Earth’s magnetotail.

PACS numbers 94.30.ct 94.05.-a 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. F. Ness, J. Geophys. Res. 70, 2989 (1965).CrossRefADSGoogle Scholar
  2. 2.
    V. A. Sergeev, T. I. Pulkkinen, and R. J. Pellinen, J. Geophys. Res. 101, 13047 (1996).CrossRefADSGoogle Scholar
  3. 3.
    V. Sergeev, A. Runov, W. Baumjohann, et al., Geophys. Res. Lett. 30, 1327 (2003).CrossRefADSGoogle Scholar
  4. 4.
    A. Runov, R. Nakamura, W. Baumjohann, et al., Geophys. Rev. Lett. 30, 1579 (2003).CrossRefADSGoogle Scholar
  5. 5.
    C. T. Russell and R. L. McFerron, Space Sci. Rev. 15, 205 (1973).CrossRefADSGoogle Scholar
  6. 6.
    R. Nakamura, W. Baumjohann, A. Runov, et al., The Second Workshop on Thin Current Sheet, College Park, 2004, Online Presentation: Scholar
  7. 7.
    J. Buchner and L. M. Zelenyi, J. Geophys. Res. 94, 11821 (1989).CrossRefADSGoogle Scholar
  8. 8.
    L. M. Zelenyi, H. V. Malova, V. Yu. Popov, et al., Nonlin. Proc. Geophys. 11, 1 (2004).CrossRefGoogle Scholar
  9. 9.
    L. M. Zelenyi, H. V. Malova, V. Y. Popov, et al., Geophys. Rev. Lett. 33, L05105 (2006).CrossRefGoogle Scholar
  10. 10.
    L. M. Zelenyi, D. C. Delcourt, H. V. Malova, and A. S. Sharma, Geophys. Rev. Lett. 29, 1608 (2002).CrossRefADSGoogle Scholar
  11. 11.
    L. M. Zelenyi, M. S. Dolgonosov, A. A. Bykov, et al., Kosm. Issl., No. 40, 385 (2002).Google Scholar
  12. 12.
    L. Zelenyi, M. I. Sitnov, H. V. Malova, and A. S. Sharma, Nonlin. Proc. Geophys. 7, 127 (2000).CrossRefADSGoogle Scholar
  13. 13.
    S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.Google Scholar
  14. 14.
    L. M. Kulsrud, in Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983; Énergoatomizdat, Moscow, 1983), Vol. 1.Google Scholar
  15. 15.
    G. F. Chew, M. L. Goldberger, and F. E. Low, Proc. Roy. Soc. (London), Ser. A 236, 112 (1956).zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Bykov
    • 1
  • L. M. Zelenyi
    • 2
  • Kh. V. Malova
    • 2
    • 3
  1. 1.Moscow State UniversityLeninskie gory, MoscowRussia
  2. 2.Institute for Space ResearchRussian Academy of SciencesMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations