Skip to main content
Log in

Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Bobylev, M. V. Kuzelev, and A. A. Rukhadze, Zh. Éksp. Teor. Fiz. 118, 105 (2000) [JETP 91, 93 (2000)].

    Google Scholar 

  2. M. V. Kuzelev and A. A. Rukhadze, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 36, 867 (1993).

    MathSciNet  Google Scholar 

  3. Yu. V. Bobylev, M. V. Kuzelev, and A. A. Rukhadze, Radiotekh. Élektron. (Moscow) 47, 166 (2002).

    Google Scholar 

  4. I. N. Onishchenko, A. R. Linetskiĭ, N. G. Matsiborko, et al., Pis’ma Zh. Éksp. Teor. Fiz. 12, 407 (1970) [JETP Lett. 12, 281 (1970)].

    Google Scholar 

  5. R. I. Kovtun and A. A. Rukhadze, Zh. Éksp. Teor. Fiz. 58, 1709 (1970) [Sov. Phys. JETP 31, 915 (1970)].

    Google Scholar 

  6. M. V. Kuzelev, O. V. Lazutchenko, and A. A. Rukhadze, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 958 (1999).

    Google Scholar 

  7. M. V. Kuzelev, A. A. Rukhadze, and P. S. Strelkov, Plasma Relativistic Microwave Electronics (Mosk. Gos. Tekhn. Univ. im. N.É. Baumana, Moscow, 2002) [in Russian]

    Google Scholar 

  8. M. V. Kuzelev and A. A. Rukhadze, in Problems of Theoretical Physics and Astrophysics, Ed. by L. V. Keldysh and V. Ya. Fainberg (Nauka, Moscow, 1989), p. 70 [in Russian]

    Google Scholar 

  9. M. V. Kuzelev and A. A. Rukhadze, Usp. Fiz. Nauk 152, 285 (1987) [Sov. Phys. Usp. 30, 507 (1987)].

    Article  Google Scholar 

  10. Yu. P. Bliokh, V. I. Karas’, M. G. Lyubarskiĭ, et al., Dokl. Akad. Nauk SSSR 275, 56 (1984) [Sov. Phys. Doklady 29, 205 (1984)].

    ADS  Google Scholar 

  11. A. F. Aleksandrov, M. V. Kuzelev, and A. N. Khalilov, Zh. Éksp. Teor. Fiz. 93, 1714 (1987) [Sov. Phys. JETP 66, 978 (1987)].

    ADS  Google Scholar 

  12. Yu. V. Bobylev and M. V. Kuzelev, Fiz. Plazmy 30, 73 (2004) [Plasma Phys. Rep. 30, 69 (2004)].

    Google Scholar 

  13. M. V. Kuzelev and A. A. Rukhadze, Electrodynamics of Dense Electron Beams in Plasma (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  14. M. V. Kuzelev, A. A. Rukhadze, and Yu. V. Bobylev, Zh. Éksp. Teor. Fiz. 91, 1620 (1986) [Sov. Phys. JETP 64, 956 (1986)].

    ADS  Google Scholar 

  15. M. V. Kuzelev, A. A. Rukhadze, and G. V. Sanadze, Zh. Éksp. Teor. Fiz. 89, 1591 (1985) [Sov. Phys. JETP 62, 921 (1985)].

    ADS  Google Scholar 

  16. J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon, Oxford, 1976; Énergoizdat, Moscow, 1981).

    Google Scholar 

  17. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Nauka, Moscow, 1971; Academic Press, New York, 1980).

    Google Scholar 

  18. A. A. Ivanov, Physics of Highly Nonequilibrium Plasmas (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  19. Ya. B. Faĭnberg, V. D. Shapiro, and V. I. Shevchenko, Zh. Éksp. Teor. Fiz. 57, 966 (1969) [Sov. Phys. JETP 30, 528 (1969)].

    Google Scholar 

  20. V. D. Shapiro and V. I. Shevchenko, Zh. Éksp. Teor. Fiz. 60, 1023 (1971) [Sov. Phys. JETP 33, 555 (1971)].

    Google Scholar 

  21. I. E. Tamm, The Principles of Electricity Theory (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Bobylev, M.V. Kuzelev, A.A. Rukhadze, 2008, published in Fizika Plazmy, 2008, Vol. 34, No. 2, pp. 122–139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, Y.V., Kuzelev, M.V. & Rukhadze, A.A. Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect. Plasma Phys. Rep. 34, 103–120 (2008). https://doi.org/10.1134/S1063780X08020037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X08020037

PACS numbers

Navigation