Skip to main content
Log in

Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The force balance in a thin collisionless current sheet in the Earth’s magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 107 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Syrovatski’, Zh. Éksp. Teor. Fiz. 60, 1727 (1971) [Sov. Phys. JETP 33, 933 (1971)].

    Google Scholar 

  2. D. G. Mitchell, G. J. Williams, C. Y. Huang, et al., Geophys. Rev. Lett. 17, 583 (1990).

    ADS  Google Scholar 

  3. J. Sanny, R. L. McPherron, C. T. Russell, et al., J. Geophys. Res. 99, 5805 (1994).

    Article  ADS  Google Scholar 

  4. V. A. Sergeev, D. G. Mitchell, C. T. Russel, et al., J. Geophys. Res. 98, 17 345 (1993).

    Google Scholar 

  5. T. I. Pulkkinen, D. N. Baker, D. G. Mitchell, et al., J. Geophys. Res. 99, 5793 (1994).

    Article  ADS  Google Scholar 

  6. P. L. Pritchett and F. V. Coroniti, Geophys. Rev. Lett. 21, 1587 (1994).

    Article  ADS  Google Scholar 

  7. J. Birn and K. Schindler, J. Geophys. Res. 107, 1117 (2002).

    Article  Google Scholar 

  8. M. Hesse, D. Winske, M. M. Kuznetsova, et al., J. Geomagn. Geoelectr. 48, 749 (1996).

    Google Scholar 

  9. E. G. Harris, Nuovo Chimento 23, 115 (1962).

    MATH  Google Scholar 

  10. L. M. Zelenyi, M. I. Sitnov, H. V. Malova, et al., Nonlin. Processes Geophys. 7, 127 (2000).

    Article  ADS  Google Scholar 

  11. L. M. Zelenyi, H. V. Malova, V. Yu. Popov, et al., Nonlin. Processes Geophys. 11, 1 (2004).

    Google Scholar 

  12. J. Buchner and L. M. Zelenyi, J. Geophys. Res. 94, 11 821 (1989).

    Google Scholar 

  13. L. M. Zelenyi, H. V. Malova, V. Yu. Popov, et al., Geophys. Res. Lett. 33, L05 105 (2006).

    Google Scholar 

  14. A. V. Runov, V. A. Sergeev, R. Nakamura, et al., Ann. Geophys. 23, 1 (2005).

    Article  Google Scholar 

  15. F. J. Rich, V. M. Vasyliunas, and R. A. Wolf, J. Geophys. Res. 77, 4670 (1972).

    Article  ADS  Google Scholar 

  16. G. R. Burkhart, J. F. Drake, P. B. Dusenbery, et al., J. Geophys. Res. 97, 13 799 (1992).

    Google Scholar 

  17. M. Ashour-Abdalla, L. M. Zelenyi, V. Peroomian, et al., J. Geophys. Res. 99, 14 891 (1994).

    Google Scholar 

  18. M. I. Sitnov, L. M. Zelenyi, H. V. Malova, et al., J. Geophys. Res. 105, 13 029 (2000).

    Google Scholar 

  19. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).

    Google Scholar 

  20. Ch. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations (McGraw-Hill, New York, 1985; Énergoatomizdat, Moscow, 1989).

    Google Scholar 

  21. L. V. Borodachev, I. V. Mingalev, and O. V. Mingalev, Mat. Model. 18(11), 117 (2006).

    MATH  MathSciNet  Google Scholar 

  22. L. M. Zelenyĭ, M. S. Dolgonosov, A. A. Bykov, et al., Kosm. Issl. 40, 385 (2002).

    Google Scholar 

  23. Yu. S. Sigov, Numerical Experiment: A Bridge between the Past and Future of Plasma Physics (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  24. L. V. Borodachev, I. V. Mingalev, and O. V. Mingalev, Zh. Vychisl. Mat. Mat Fiz. 43, 467 (2003).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.V. Mingalev, I.V. Mingalev, Kh.V. Malova, L.M. Zelenyi, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 11, pp. 1028–1041.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingalev, O.V., Mingalev, I.V., Malova, K.V. et al. Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component. Plasma Phys. Rep. 33, 942–955 (2007). https://doi.org/10.1134/S1063780X07110062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07110062

PACS numbers

Navigation