Skip to main content
Log in

Increase in the discharge duration under the action of ion-cyclotron plasma heating in the T-11M tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental and theoretical studies of the heating of a hydrogen plasma with a lithium admixture at the fundamental ion-cyclotron frequency of hydrogen in the T-11M tokamak. It is found experimentally that the action of RF radiation on a hydrogen plasma containing a small amount (less than 4%) of lithium increases the duration of the discharge current pulse. The effect of the increase in the discharge current pulse under the action of RF radiation is simulated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Golant and V. I. Fedorov, Methods of High-Frequency Plasma Heating in Toroidal Fusion Devices (Énergoizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  2. A. V. Longinov and K. N. Stepanov, in High-Frequency Plasma Heating, Ed. by A. G. Litvak (AIP, New York, 1992), p. 93.

    Google Scholar 

  3. V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1966), Vol. 2.

    Google Scholar 

  4. A. Beculet, Plasma Phys. Controlled Fusion 38, A1 (1996).

    Article  ADS  Google Scholar 

  5. A. A. Ivanov and T. K. Soboleva, Zh. Éksp. Teor. Fiz. 62, 2170 (1972) [Sov. Phys. JETP 35, 1135 (1972)].

    Google Scholar 

  6. N. V. Ivanov, I. A. Kovan, and V. S. Svishchev, Pis’ma Zh. Éksp. Teor. Fiz. 20, 91 (1974) [JETP Lett. 20, 39 (1974)].

    ADS  Google Scholar 

  7. S. Sen and R. A. Cairns, Phys. Plasmas 12, 4280 (1998).

    Article  ADS  Google Scholar 

  8. V. A. Batyuk, M. A. Blokh, S. E. Grebenshchikov, et al., in Proceedings of the 11th EPS Conference on Controlled Fusion and Plasma Physics, Aschen, 1983, ECA C14(1), 373 (1983).

    Google Scholar 

  9. V. A. Batyuk, G. S. Voronov, E. F. Gippius, et al., Fiz. Plazmy 13, 259 (1987) [Sov. J. Plasma Phys. 13, 143 (1987)].

    Google Scholar 

  10. V. A. Batyuk and A. I. Meshcheryakov, Preprint No. 10 (Inst. of General Physics, Russ. Acad. Sci, Moscow, 1987).

  11. T. Mutoh, O. Motojima, M. Sato, et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, 1986, Vol. 3, p. 473.

  12. I. J. Artemenkov, N. A. Akhmerov, V. F. Bogdanov, et al., in Proceedings of the 10th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, London, 1984, Vol. 1, p. 615.

  13. N. B. Rodionov, É. A. Azizov, A. G. Alekseev, et al., Fiz. Plazmy 32, 101 (2006) [Plasma Phys. Rep. 32, 83 (2006)].

    Google Scholar 

  14. A. I. Kislyakov, A. V. Krasil’nikov, M. P. Petrov, and A. N. Romannikov, Preprint No. IAÉ-4460/7 (TsNIIatominform, Moscow, 1987).

  15. A. M. Belov, A. I. Markin, A. G. Alekseev, and S. V. Mirnov, Fiz. Plazmy 31, 126 (2005) [Plasma Phys. Rep. 31, 104 (2005)].

    Google Scholar 

  16. V. F. Shevchenko, A. A. Petrov, V. G. Petrov, and Yu. A. Chaplygin, Fiz. Plazmy 22, 32 (1996) [Plasma Phys. Rep. 22, 28 (1996)].

    Google Scholar 

  17. V. G. Petrov and A. A. Petrov, in Annual Report of the Tokamak-Reactor Division for 2001 (Troitsk Inst. for Innovation and Fusion Research, Troitsk, 2002), p. 116.

    Google Scholar 

  18. A. Alekseyev, G. Perov, A. Kurnosov, et al., Plasma Devices Operat. 7, 139 (1999).

    Article  Google Scholar 

  19. C. Giroud, C. Angioni, G. Bonheure, et al., in Proceedings of the 21st IAEA Conference on Fusion Energy, Chengdu, 2006, Paper IAEA-CN-149/EX/8-3.

  20. R. R. Khayrutdinov and V. E. Lukash, J. Comput. Phys. 109, 193 (1993).

    Article  MATH  ADS  Google Scholar 

  21. Yu. N. Dnestrovskij and D. P. Kostomarov, Models of Energy and Particle Balance in Tokamaks (Mir, Moscow, 1974) [in Russian].

    Google Scholar 

  22. Yu. N. Dnestrovskij and D. P. Kostomarov, Numerical Simulation of Plasmas (Nauka, Moscow, 1982; Springer-Verlag, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.B. Rodionov, É.A. Azizov, A.V. Krasil’nikov, A.G. Alekseev, V.I. Gudkov, A.A. Petrov, A.A. Ivanov, E.A. Kuznetsov, V.G. Petrov, V.P. Rodionova, S.M. Sotnikov, A.G. Trapeznikov, R.R. Khaĭrutdinov, I.Ya. Shipuk, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 11, pp. 963–970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodionov, N.B., Azizov, É.A., Krasil’nikov, A.V. et al. Increase in the discharge duration under the action of ion-cyclotron plasma heating in the T-11M tokamak. Plasma Phys. Rep. 33, 883–889 (2007). https://doi.org/10.1134/S1063780X07110013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07110013

PACS numbers

Navigation