Skip to main content
Log in

Characteristics of molecular hydrogen and CH* radicals in a methane plasma in a magnetically enhanced capacitive RF discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The parameters of a methane-containing plasma in an asymmetric RF capacitive discharge in an external magnetic field were studied using optical emission spectroscopy. The power deposited in the discharge was 90 W and the gas pressure and magnetic field were varied in the ranges 1–5 Pa and 50–200 G, respectively. The vibrational and rotational temperatures of hydrogen molecules and CH* radicals were measured as functions of the magnetic field and methane pressure. The ratio between the densities of atomic and molecular hydrogen was estimated. The processes responsible for the excitation of molecular hydrogen and CH* radicals in a methane-containing plasma in an RF capacitive discharge are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sunil, V. D. Vankar, and K. L. Chopra, J. Appl. Phys. 69, 3719 (1991).

    Article  ADS  Google Scholar 

  2. J. J. Beulens, PhD Thesis (Eindhoven University of Technology, Eindhoven, 1992), p. 12.

  3. J. Stephen, J. Harris, and A. M. Weiner, J. Appl. Phys. 74, 1022 (1993).

    Article  ADS  Google Scholar 

  4. J. W. A. M. Gielen, PhD Thesis (Eindhoven University of Technology, Eindhoven, 1996), p. 45.

  5. A. N. Gladkiĭ, S. Yu. Suzdal’tsev, and R. K. Yafarov, Zh. Tekh. Fiz. 70(5), 133 (2000) [Tech. Phys. 45, 656 (2000)].

    Google Scholar 

  6. A. A. Zolotukhin, A. N. Obraztsov, A. P. Volkov, and A. O. Ustinov, Pis’ma Zh. Tekh. Fiz. 29(9), 58 (2003) [Tech. Phys. Lett. 29, 380 (2003)].

    Google Scholar 

  7. A. P. Semyonov, A. F. Belyanin, I. A. Semyonova, et al., Zh. Tekh. Fiz. 74(5), 101 (2004) [Tech. Phys. 49, 619 (2004)].

    Google Scholar 

  8. P. Bruno, F. Benedic, F. Mohasseb, et al., J. Phys. D 37, 35 (2004).

    Article  ADS  Google Scholar 

  9. M. F. Leahy and G. Kaganowicz, Solid State Technol. 30, 99 (1987).

    Google Scholar 

  10. B. S. Danilin, Application of Low-Temperature Plasmas for Depositing Thin Films (Énergoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  11. B. S. Danilin and V. D. Kireev, Application of Low-Temperature Plasmas for Etching and Cleaning Materials (Énergoatomizdat, Moscow, 1987) [in Russian].

    Google Scholar 

  12. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

    Google Scholar 

  13. D. G. Goodvin, J. Appl. Phys. 74, 6889 (1993).

    ADS  Google Scholar 

  14. D. G. Goodvin, J. Appl. Phys. 74, 6897 (1993).

    ADS  Google Scholar 

  15. W. Du, X. Yang, H. Povolny, et al., J. Phys. D 38, 838 (2005).

    Article  ADS  Google Scholar 

  16. A. Pastol and Y. J. Catherine, J. Phys. D 23, 799 (1990).

    Article  ADS  Google Scholar 

  17. N. Mutsukura, S. Inoue, and Y. Machi, J. Appl. Phys. 72, 43 (1992).

    Article  ADS  Google Scholar 

  18. E. Amanatides and D. Mataras, Diamond Relat. Mater. 14, 292 (2005).

    Article  Google Scholar 

  19. V. V. Ivanov, A. M. Popov, and T. V. Rakhimov, Fiz. Plazmy 21, 731 (1995) [Plasma Phys. Rep. 21, 692 (1995)].

    Google Scholar 

  20. D. Herrebout, A. Bogaerts, M. Yan, et al., J. Appl. Phys. 90, 570 (2001).

    Article  ADS  Google Scholar 

  21. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultants Bureau, New York, 1987).

    Google Scholar 

  22. V. D. Rusanov and A. A. Fridman, TRANSL (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  23. D. I. Slovetskiĭ, Mechanisms for Chemical Reactions in Nonequilibrium Plasmas (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  24. Nonequilibrium Oscillatory Kinetics, Ed. by M. Capitelli (New York, Springer-Verlag, 1986; Mir, Moscow, 1989).

    Google Scholar 

  25. Plasma Diagnostics, Ed. by W. Lochte-Holtgreven (American Elsevier, New York, 1968; Mir, Moscow, 1971).

    Google Scholar 

  26. M. J. de Graaf, PhD Thesis (Eindhoven University of Technology, Eindhoven, 1994).

  27. S. V. Avtaeva, D. K. Otorbaev, and M. Z. Mamytbekov, J. Phys. D 30, 3000 (1997).

    Article  ADS  Google Scholar 

  28. R. W. B. Pearse and A. G. Gaydon, The Identification of Molecular Spectra (Chapman & Hall, London, 1941; Inostrannaya Literatura, Moscow, 1949).

    Google Scholar 

  29. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Atomizdat, Moscow, 1978; Springer-Verlag, Berlin, 1985).

    Google Scholar 

  30. D. Alman, D. Ruzic, and J. Brooks, Phys. Plasmas 7, 1421 (2000).

    Article  ADS  Google Scholar 

  31. BOLSIG+ 2005 CPAT: http://www.codiciel.fr/plateforme/plasma/bolsig/bolsig.php.

  32. G. J. M. Hagelaar and L. C. Pitchford, Plasma Sources Sci. Technol. 14, 722 (2005).

    Article  ADS  Google Scholar 

  33. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979; Mir, Moscow, 1984).

    Google Scholar 

  34. D. K. Otorbaev, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Vol. 2, p. 606 [in Russian].

    Google Scholar 

  35. S. V. Avtaeva and D. K. Otorbaev, in Proceedings of the 15th International Symposium on Plasma Chemistry, Orleans, 2001, Vol. 4, p. 1267.

  36. P. F. Gruzdev, Transition Probabilities and Radiative Lifetimes of Atomic and Ionic Levels (Énergoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  37. J. Calloway, Phys. Rev. A 37, 3692 (1988).

    Article  ADS  Google Scholar 

  38. G. R. Möhlmann and F. J. de Heer, Chem. Phys. Lett. 43, 240 (1976).

    Article  ADS  Google Scholar 

  39. L. A. Kuznetsov, N. E. Kuz’menko, Yu. Ya. Kuzyakov, and Yu. A. Plastinin, Probabilities of Optical Transitions in Diatomic Molecules (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  40. M. Tatanova, G. Thieme, R. Basner, et al., Plasma Sources Sci. Technol. 15, 507 (2006).

    Article  ADS  Google Scholar 

  41. V. Ivanov, O. Proshina, T. Rakhimova, et al., J. Appl. Phys. 91, 6296 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Avtaeva, T.M. Lapochkina, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 9, pp. 846–858.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avtaeva, S.V., Lapochkina, T.M. Characteristics of molecular hydrogen and CH* radicals in a methane plasma in a magnetically enhanced capacitive RF discharge. Plasma Phys. Rep. 33, 774–785 (2007). https://doi.org/10.1134/S1063780X07090073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07090073

PACS numbers

Navigation