Skip to main content
Log in

Properties of a low-pressure inductive RF discharge I: Experiment

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of low-pressure inductive RF discharges (including those with a capacitive component) employed in plasma technology. It is shown that both the RF power absorbed in the plasma and the electron density depend nonmonotonically on the external magnetic field. Discharge disruptions occurring at critical values of the magnetic field and the spatial redistribution and hysteresis of the plasma parameters were observed when varying the magnetic field and RF generator power. The parameters of the plasma of low-pressure (0.5–5 mTorr) inductive RF discharges were investigated, and the discharge properties related to the redistribution of the RF generator power between the plasma and the discharge external circuit were revealed. The experiments were performed with both conventional unmagnetized inductive plasma sources and plasma sources with a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Thomson, Philos. Mag. 32, 321 (1891).

    Google Scholar 

  2. W. Hittorf, Ann. Phys. Chem. 21, 90 (1884).

    ADS  Google Scholar 

  3. V. A. Godyak, in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003.

  4. V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasma Sources Sci. Technol. 11, 525 (2002).

    Article  ADS  Google Scholar 

  5. D. C. Miljak and F. F. Chen, Plasma Sources Sci. Technol. 7, 61 (1998).

    Article  ADS  Google Scholar 

  6. D. D. Blackwell and F. F. Chen, Plasma Sources Sci. Technol. 10, 226 (2001).

    Article  ADS  Google Scholar 

  7. J. Hopwood, Plasma Sources Sci. Technol. 1, 109 (1992).

    Article  ADS  Google Scholar 

  8. F. F. Chen, Plasma Phys. Controlled Fusion 33, 339 (1991).

    Article  ADS  Google Scholar 

  9. A. F. Aleksandrov, N. F. Vorob’ev, E. A. Kral’kina, et al., Zh. Tekh. Fiz. 64(11), 53 (1994) [Tech. Phys. 39, 1118 (1994)].

    Google Scholar 

  10. K. P. Shamrai and V. B. Taranov, Plasma Sources Sci. Technol. 5, 474 (1996).

    Article  ADS  Google Scholar 

  11. J. E. Stevens, in High Density Plasma Sources: Design, Physics and Performance, Ed. by O. A. Popov (Noyes, Park Ridge, NJ, 1996), p. 312.

    Google Scholar 

  12. F. F. Chen, in High Density Plasma Sources: Design, Physics and Performance, Ed. by O. A. Popov (Noyes, Park Ridge, NJ, 1996), p. 1.

    Google Scholar 

  13. R. B. Piejak, V. A. Godyak, and B. M. Alexandrovich, Plasma Sources. Sci. Technol. 1, 179 (1992).

    Article  ADS  Google Scholar 

  14. V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasma Sources. Sci. Technol. 3, 169 (1994).

    Article  ADS  Google Scholar 

  15. A. F. Aleksandrov, G. É. Bugrov, K. V. Vavilin, et al., Fiz. Plazmy 30, 434 (2004) [Plasma Phys. Rep. 30, 398 (2004)].

    Google Scholar 

  16. K. V. Vavilin, V. Yu. Plaksin, M. Kh. Ri, and A. A. Rukhadze, Zh. Tekh. Fiz. 74(5), 44 (2004) [Tech. Phys. 49, 565 (2004)].

    Google Scholar 

  17. K. V. Vavilin, V. Yu. Plaksin, M. Kh. Ri, and A. A. Rukhadze, Zh. Tekh. Fiz. 74(6), 25 (2004) [Tech. Phys. 49, 686 (2004)].

    Google Scholar 

  18. K. V. Vavilin, A. A. Rukhadze, M. Kh. Ri, and V. Yu. Plaksin, Fiz. Plazmy 30, 739 (2004) [Plasma Phys. Rep. 30, 687 (2004)].

    Google Scholar 

  19. A. F. Aleksandrov, G. É. Bugrov, K. V. Vavilin, et al., Prikl. Fiz., No. 2, 41 (2006).

  20. A. F. Aleksandrov, G. É. Bugrov, K. V. Vavilin, et al., Prikl. Fiz., No. 4, 54 (2006).

  21. K. P. Shamrai, V. F. Virko, H.-O. Blom, et al., J. Vac. Sci. Technol. A 15, 2864 (1977).

    Article  ADS  Google Scholar 

  22. F. F. Chen, J. D. Evans, and G. R. Tynan, Plasma Sources Sci. Technol. 10, 236 (2001).

    Article  ADS  Google Scholar 

  23. A. F. Aleksandrov, G. É. Bugrov, K. V. Vavilin, et al., Prikl. Fiz., No. 5, 33 (2006).

  24. Effective Electron-Impact Excitation Cross Sections of Atoms and Ions, Ed. by. Yu. M. Smirnov (Izd. Standartov, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.F. Aleksandrov, K.V. Vavilin, E.A. Kral’kina, V.B. Pavlov, A.A. Rukhadze, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 9, pp. 802–815.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, A.F., Vavilin, K.V., Kral’kina, E.A. et al. Properties of a low-pressure inductive RF discharge I: Experiment. Plasma Phys. Rep. 33, 733–745 (2007). https://doi.org/10.1134/S1063780X07090048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07090048

PACS numbers

Navigation