Skip to main content
Log in

Modulational excitation of low-frequency dust acoustic waves in the Earth’s lower ionosphere

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

During the observation of Perseid, Leonid, Gemenid, and Orionid meteor showers, stable low-frequency lines in the frequency range of 20–60 Hz were recorded against the radio-frequency noise background. A physical mechanism for this effect is proposed, and it is established that the effect itself is related to the modulational interaction between electromagnetic and dust acoustic waves. The dynamics of the components of a complex (dusty) ionospheric plasma with dust produced from the evolution of meteoric material is described. The conditions for the existence of dust acoustic waves in the ionosphere are considered, and the waves are shown to dissipate energy mainly in collisions of neutral particles with charged dust grains. The modulational instability of electromagnetic waves in a complex (dusty) ionospheric plasma is analyzed and is found to be driven by the nonlinear Joule heating, the ponderomotive force, and the processes governing dust charging and dynamics. The conditions for the onset of the modulational instability of electromagnetic waves, as well as its growth rate and threshold, are determined for both daytime and nighttime. It is shown that low-frequency perturbations generated in the modulational interaction are related to dust acoustic waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dusty Plasmas: Physics, Chemistry, and Technological Impacts in Plasma Processing, Ed. by A. Bouchoule (Wiley, New York, 1999).

    Google Scholar 

  2. P. K. Shukla and A. A. Mamum, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  3. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    MATH  Google Scholar 

  4. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  5. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Usp. Fiz. Nauk 174, 495 (2004) [Phys. Usp. 47, 447 (2004)].

    Article  Google Scholar 

  6. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, et al., Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  7. A. M. Ignatov, Fiz. Plazmy 31, 52 (2005) [Plasma Phys. Rep. 31, 46 (2005)].

    Google Scholar 

  8. S. I. Popel and A. A. Gisko, Nonlinear Proc. Geophys. 13, 223 (2006).

    Article  ADS  Google Scholar 

  9. V. A. Bronshtén and N. I. Grishin, Noctilucent Clouds (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  10. V. A. Bronshtén, Noctilucent Clouds and Their Observation (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  11. W. J. McNeil, J. Geophys. Res. 103, 10899 (1998).

    Article  ADS  Google Scholar 

  12. O. P. Popova, in Nano-and Microscale Particles in Geophysical Processes, Ed. by, V. V. Adushkin and S. I. Popel (MFTI, Moscow, 2006), p. 95 [in Russian].

    Google Scholar 

  13. V. N. Lebedinets, Meteors (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  14. V. N. Lebedinets, Aerosols in the Upper Atmosphere and Cosmic Dust (Gidrometeoizdat, Leningrad, 1980) [in Russian].

    Google Scholar 

  15. B. A. Klumov, G. E. Morfill, and S. I. Popel, Zh. Éksp. Teor. Fiz. 127, 171 (2005) [JETP 100, 152 (2005)].

    Google Scholar 

  16. B. A. Klumov, S. I. Popel, and R. Bingham, Pis’ma Zh. Éksp. Teor. Fiz. 72, 524 (2000) [JETP Lett. 72, 364 (2000)].

    Google Scholar 

  17. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Planet. Space Sci. 52, 1187 (2004).

    Article  ADS  Google Scholar 

  18. L. A. Shchepkin and G. P. Kushnarenko, Soln.-Zemn. Fiz., No. 3, 43 (2003).

  19. M. J. Buonsanto, J. C. Foster, and D. P. Sipler, J. Geophys. Res. 97, 1225 (1992).

    Article  ADS  Google Scholar 

  20. S. I. Musatenko, Yu. S. Musatenko, E. V. Kurochka, et al., Geomagn. Aéron. 41, 812 (2001).

    Google Scholar 

  21. S. I. Musatenko, Yu. S. Musatenko, V. Ya. Kurochka, et al., Fourth Ukrainian Conference on Space Research, Ponizovka, 2004, Abstracts of Papers, p. 96.

  22. S. I. Musatenko, Private communication (2005).

  23. S. I. Kopnin and S. I. Popel, in Proceedings of the 4th International Conference on Physics of Dusty Plasmas, Orleans, 2005, AIP Conf. Proc. 799, 161 (2005).

    ADS  Google Scholar 

  24. S. V. Vladimirov, V. N. Tsytovich, S. I. Popel, and F. Kh. Khakimov, Modulational Interactions in Plasmas (Kluwer, Dordrecht, 1995).

    Google Scholar 

  25. S. I. Popel, Fiz. Plazmy 24, 1093 (1998) [Plasma Phys. Rep. 24, 1022 (1998)].

    Google Scholar 

  26. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  27. R. I. Schoen, Can. J. Chem. 47, 1879 (1969).

    Article  Google Scholar 

  28. R. S. Stolarski and N. P. Johnson, J. Atmos. Terr. Phys. 32, 1691 (1972).

    Article  ADS  Google Scholar 

  29. I. A. Krinberg, Electron Kinetics in the Earth’s Ionosphere and Plasmosphere (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  30. C. Y. Johnson, J. Geophys. Res. 71, 330 (1966).

    ADS  Google Scholar 

  31. N. R. Philbric, R. S. Narcisi, R. E. Good, et al., Space Res. 13, 441 (1973).

    Google Scholar 

  32. E. Kopp, P. Ebfirhardt, and U. Herrmann, Space Res. 18, 245 (1978).

    Google Scholar 

  33. O. Lie-Svendsen, T. A. Blix, and U. P. Hoppe, J. Geophys. Res. 108, 8442 (2003).

    Article  Google Scholar 

  34. O. Havnes, T. Aslaksen, and A. Brattli, Physica Scr. T89, 133 (2001).

    Article  ADS  Google Scholar 

  35. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

  36. S. I. Popel, A. A. Gisko, A. P. Golub’, et al., Phys. Plasmas 7, 2410 (2000).

    Article  ADS  Google Scholar 

  37. P. K. Shukla and S. V. Vladimirov, Phys. Plasmas 2, 3179 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.I. Kopnin, S.I. Popel, M. Y. Yu, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 4, pp. 323–336.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopnin, S.I., Popel, S.I. & Yu, M.Y. Modulational excitation of low-frequency dust acoustic waves in the Earth’s lower ionosphere. Plasma Phys. Rep. 33, 289–301 (2007). https://doi.org/10.1134/S1063780X07040046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07040046

PACS numbers

Navigation