Skip to main content
Log in

Study of the dynamics of the electrode plasma in a high-current magnetically insulated transmission line

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A series of experiments was carried out in the S-300 facility (3 MA, 0.15 Θ, 100 ns) to study the behavior of a section of a magnetically insulated transmission line (MITL) at current densities of up to 500 MA/cm2 and linear current densities of up to 6 MA/cm (i.e., at parameters close to those expected in a fast Z-pinch fusion reactor projected in Sandia National Laboratories). The surface explosion of the ohmically heated MITL electrode is accompanied by the formation of a plasma layer on its surface. This can deteriorate of the transmission properties of the line because the vacuum gap is short-circuited by the plasma produced. The parameters of the electrode plasma and its effect on the MITL transmission properties were investigated experimentally. Possible consequences of the above effects are evaluated, and MHD simulations of the electrode explosion and the subsequent spread of the plasma layer are performed. It is shown that the time during which an MITL segment preserves its transmission properties conforms to the requirements of the conceptual fusion reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Slutz, C. L. Olson, and P. Peterson, Phys. Plasmas 10, 429 (2003).

    Article  ADS  Google Scholar 

  2. Yu. G. Kalinin, A. V. Korel’skiĭ, E. V. Kravchenko, and A. Yu. Shashkov, Kvantovaya Élektron. (Moscow), 34, 399 (2004).

    Article  Google Scholar 

  3. É. P. Kruglyakov, in Plasma Diagnostics, Ed. by S. Yu. Luk’yanov (Atomizdat, Moscow, 1973), Vol. 3, p. 97 [in Russian].

    Google Scholar 

  4. A. B. Mikhailovskii, Electromagnetic Instabilities in an Inhomogeneous Plasma (Atomizdat, Moscow, 1975; Institute of Physics, Bristol, 1992).

    Google Scholar 

  5. A. V. Batjunin, A. N. Bulatov, A. V. Branitskij, et al., in Proceedings of the 8th International Conference on High-Power Particle Beams, Novosibirsk, 1990, Vol. 2, p. 1091.

  6. P. V. Sasorov, Fiz. Plazmy 17, 1507 (1991) [Sov. J. Plasma Phys. 17, 874 (1991)].

    Google Scholar 

  7. A. S. Kingsep, K. V. Chukbar, and V. V. Yan’kov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Énergoatomizdat, Moscow, 1987; Consultants Bureau, New York, 1990), Vol. 16.

    Google Scholar 

  8. S. L. Bogolyubsky, E. M. Gordeev, Yu. G. Kalinin, et al., in Proceedings of the 7th International Conference on High-Power Particle Beams, Karlsruhe, 1988, p. 1255.

  9. Yu. Kalinin, A. Kingsep, L. Rudakov, and K. Chukbar, Laser Part. Beams 19, 393 (2001).

    Article  ADS  Google Scholar 

  10. L. I. Rudakov and A. A. Sevastianov, in Proceedings of the 11th International Conference on High-Power Particle Beams, Prague, 1996, p. 766.

  11. A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, Equations of State of Metals at High Energy Densities (IKhFCh RAN, Chernogolovka, 1992) [in Russian].

    Google Scholar 

  12. V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, Nucl. Instrum. Methods Phys. Res. A 415, 604 (1998).

    Article  Google Scholar 

  13. P. R. Levashov and K. V. Khishchenko, in Physics of Extreme States of Matter-2004, Ed. by V. E. Fortov, V. P. Efremov, and K. V. Khishchenko (IPFKh RAN, Chernogolovka, 2004), p. 53 [in Russian].

    Google Scholar 

  14. S. I. Tkachenko, Teplofiz. Vys. Temp. 39, 214 (2001).

    Google Scholar 

  15. S. I. Tkachenko, K. V. Khishchenko, V. S. Vorob’ev, et al., Teplofiz. Vys. Temp. 39, 728 (2001).

    Google Scholar 

  16. H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam, 1970; Mir, Moscow, 1972).

    Google Scholar 

  17. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  18. V. N. Korobenko, M. V. Agranat, S. I. Ashitikov, and A. I. Savvatimskiy, Int. J. Thermophys. 23, 307 (2002).

    Article  Google Scholar 

  19. N. A. Bobrova, T. L. Razinkova, and P. V. Sasorov, Fiz. Plazmy 18, 517 (1992) [Sov. J. Plasma Phys. 18, 269 (1992)].

    Google Scholar 

  20. N. A. Bobrova, S. V. Bulanov, D. Farina, et al., Laser Part. Beams 18, 623 (2000).

    Article  ADS  Google Scholar 

  21. M. M. Basko, Teplofiz. Vys. Temp. 23, 483 (1985).

    Google Scholar 

  22. N. A. Bobrova, A. A. Esaulov, J.-I. Sakai, et al., Phys. Rev. E 65, 016407 (2002).

    Google Scholar 

  23. M. Basko, Th. Löwer, V. Kondrashov, et al., Phys. Rev. E 56, 1019 (1997).

    Article  ADS  Google Scholar 

  24. N. A. Bobrova and P. V. Sasorov, Fiz. Plazmy 19, 789 (1993) [Plasma Phys. Rep. 19, 409 (1993)].

    Google Scholar 

  25. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963; Consultants Bureau, New York, 1965), Vol. 1.

    Google Scholar 

  26. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1966, 1967), Vols. 1, 2.

    Google Scholar 

  27. V. V. Aleksandrov, A. G. Alekseev, V. N. Amosov, et al., Fiz. Plazmy 29, 1114 (2003) [Plasma Phys. Rep. 29, 1034 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.L. Bakshaev, A.V. Bartov, P.I. Blinov, A.S. Chemenko, S.A. Dan’ko, Yu.G. Kalinin, A.S. Kingsep, V.D. Korolev, V.I. Mizhiritskiĭ, V.P. Smirnoy, A.Yu. Shashkov, P.V. Sasorov, S.I. Tkachenko, 2007, published in Fizika Plazmy, 2007, Vol. 33, No. 4, pp. 291–303.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshaev, Y.L., Bartov, A.V., Blinov, P.I. et al. Study of the dynamics of the electrode plasma in a high-current magnetically insulated transmission line. Plasma Phys. Rep. 33, 259–270 (2007). https://doi.org/10.1134/S1063780X07040010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X07040010

PACS numbers

Navigation