Skip to main content
Log in

Geometric properties of plasma equilibrium near a given magnetic surface

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In order to describe plasma equilibrium near a given magnetic surface, it is sufficient to specify the shape of the surface, the distribution of the magnetic field strength on it, and two profile coefficients (the derivatives of the plasma pressure and current). Geometrically, this means that all the basis vectors of the flux coordinate system should be determined on the magnetic surface. Expressions for these vectors in an invariant basis are obtained. The maximum possible value of the pressure profile coefficient consistent with equilibrium is described by a universal geometric relationship that expresses the limiting value of the torsion of the magnetic field line on the magnetic surface as a function of the curvature of the surface. The relationships obtained are used to show that the stability of a system with closed magnetic field lines is governed by perturbations of the anti-Mercier type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bauer, O. Betancourt, and P. Garabedian, Magnetodynamic Equilibrium and Stability in Stellarators (Springer-Verlag, New York, 1984).

    Google Scholar 

  2. A. Boozer, Phys. Plasmas 9, 3762 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. C. Hegna, Phys. Plasmas 7, 3921 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  4. V. D. Pustovitov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Énergoat-omizdat, Moscow, 1982; Consultants Bureau, New York, 1987), Vol. 15.

    Google Scholar 

  5. D. Palumbo, Atti Acad. Sci. Lett. Arti Palermo 4, 475 (1983–1984).

    Google Scholar 

  6. A. A. Skovoroda, Fiz. Plazmy 26, 590 (2000) [Plasma Phys. Rep. 26, 550 (2000)].

    Google Scholar 

  7. A. Salat and J. A. Tataronis, J. Geophys. Res. 105, 13 055 (2000).

    Article  ADS  Google Scholar 

  8. Yu. A. Aminov, Vector Field Geometry (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  9. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1961; Nauka, Moscow, 1971).

    MATH  Google Scholar 

  10. A. A. Skovoroda, Fiz. Plazmy 24, 1059 (1998) [Plasma Phys. Rep. 24, 989 (1998)].

    Google Scholar 

  11. A. A. Skovoroda and V. D. Shafranov, Fiz. Plazmy 21, 937 (1995) [Plasma Phys. Rep. 21, 887 (1995)].

    Google Scholar 

  12. G. Grieger, C. D. Beidler, H. Maassberg, et al., in Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC, 1990, Nucl. Fusion (Suppl.) 31, 525 (1991).

    Google Scholar 

  13. V. V. Arsenin, A. V. Zvonkov, and A. A. Skovoroda, Fiz. Plazmy 31, 6 (2005) [Plasma Phys. Rep. 31, 3 (2005)].

    Google Scholar 

  14. C. C. Hegna and N. Nakajama, Phys. Plasmas 5, 1336 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1978; Springer-Verlag, New York, 1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Skovoroda, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 12, pp. 1059–1069.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skovoroda, A.A. Geometric properties of plasma equilibrium near a given magnetic surface. Plasma Phys. Rep. 32, 977–987 (2006). https://doi.org/10.1134/S1063780X06120014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06120014

PACS numbers

Navigation