Skip to main content
Log in

Drift model of the cathode region of a glow discharge

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A one-dimensional drift model of the cathode region of a glow discharge with allowance for both electron-impact ionization and charged particle loss is proposed. An exact solution to the model equations is obtained for the case of similar power-law dependences of the ion and electron drift velocities on the electric field strength. It is shown that, even in the drift approximation, a relatively wide transition layer in which the ion-to-electron current ratio approaches a constant value typical of the positive column of a glow discharge should occur between the thin space-charge sheath and the quasineutral plasma, the voltage drop across the space-charge sheath being comparable to that across the transition layer. The calculated parameters of the normal and anomalous glow discharges are in good agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. von Engel, Ionized Gases (Clarendon, Oxford, 1965; Mir, Moscow, 1968).

    MATH  Google Scholar 

  2. V. L. Granovskiĭ, Electric Current in a Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  3. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  4. Gaseous Electronics, Ed by M. N. Hirsh and H. J. Oskam (Academic, New York, 1978), Vol. 1, Chap. 2.

    Google Scholar 

  5. A. M. Howatson, An Introduction to Gas Discharges (Pergamon, Oxford, 1965).

    Google Scholar 

  6. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases (Russ. Acad. Sci., Ural Division, Yekaterinburg, 1998).

    Google Scholar 

  7. Yu. P. Raĭzer and M. N. Shneĭder, Teplofiz. Vys. Temp. 29, 1041 (1991).

    Google Scholar 

  8. V. I. Kolobov and L. D. Tsendin, Phys. Rev. A 46, 7837 (1992).

    Article  ADS  Google Scholar 

  9. L. Yu. Abramovich, B. N. Klyarfel’d, and Yu. N. Nastich, Zh. Tekh. Fiz. 36, 713 (1966) [Sov. Phys. Tech. Phys. 11, 528 (1966)].

    Google Scholar 

  10. Yu. D. Korolev and K. Frank, IEEE Trans. Plasma Sci. 27, 1525 (1999).

    Article  Google Scholar 

  11. Yu. D. Korolev, O. B. Frants, V. G. Geyman, et al., in Proceedings of the 7th International Conference on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2004, p. 107.

  12. A. L. Ward, J. Appl. Phys. 33, 2789 (1962).

    Article  Google Scholar 

  13. K. N. Ul’yanov, Teplofiz. Vys. Temp. 10, 931 (1972).

    Google Scholar 

  14. Yu. D. Korolev, V. B. Ponomarev, and V. S. Synakh, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 21 (1979).

  15. W. S. Boyle and F. E. Haworth, Phys. Rev. 101, 935 (1956).

    Article  ADS  Google Scholar 

  16. G. Brederlow, Ann. Phys. 1, 359 (1958).

    Google Scholar 

  17. E. Badareu, I. Popescu, and I. Iova, Rev. Phys. Acad. RPR 5, 287 (1960).

    Google Scholar 

  18. A. Günterschulze, Z. Phys. 49, 358 (1928).

    Article  Google Scholar 

  19. A. Günterschulze, Z. Phys. 59, 433 (1930).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Kozhevnikov, A.V. Kozyrev, Yu.D. Korolev, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 11, pp. 1027–1038.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikov, V.Y., Kozyrev, A.V. & Korolev, Y.D. Drift model of the cathode region of a glow discharge. Plasma Phys. Rep. 32, 949–959 (2006). https://doi.org/10.1134/S1063780X06110109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06110109

PACS numbers

Navigation