Skip to main content
Log in

Means for efficient electron beam generation in wide-aperture open-discharge light sources

  • Beams in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The interaction of a plasma in the accelerating gap of an open discharge with a strong external electric field and with the cathode surface has been investigated theoretically and experimentally. In a pulsed nanosecond discharge, the ion inertia and plasma screening of the electric field cause a fast growth of the electric field E in the cathode region and a decrease in the length of the latter. Along with a reduction of the electron multiplication factor at high electric fields, this leads to a substantial decrease in the ion flux toward the cathode, which allows one to develop highly efficient open-discharge light sources with a long lifetime and low cathode sputtering. In this respect, continuous and quasi-continuous discharges are less advantageous because of the smaller increase in the electric field in the cathode region. The Townsend coefficients of charge multiplication and electron emission at high electric fields typical of open discharges have been measured for the first time. Fast ions and atoms extracted from the plasma of the accelerating gap significantly affect the cathode emission properties. In particular, photoemission is enhanced by more than one order of magnitude and becomes the main mechanism for electron generation. This also increases the efficiency and lifetime of open-discharge light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Muratov, A. T. Rakhimov, and N. V. Suetin, Zh. Tekh. Fiz. 74(5), 121 (2004) [Tech. Phys. 49, 638 (2004)].

    Google Scholar 

  2. A. P. Bokhan and P. A. Bokhan, Opt. Atmos. Okeana 15, 190 (2002).

    Google Scholar 

  3. A. S. Kovalev, Yu. A. Mankelevich, E. A. Muratov, et al., J. Vac. Sci. Tech. A10, 1086 (1992).

    ADS  Google Scholar 

  4. G. V. Kolbychev and N. V. Ptashnik, Opt. Atmos. Okeana 13, 243 (2000).

    Google Scholar 

  5. S. V. Arlantsev, B. L. Borovich, V. V. Buchanov, et al., J. Russ. Las. Res. 16(2), 99 (1995).

    Google Scholar 

  6. P. A. Bokhan, Zh. Tekh. Fiz. 61(6), 61 (1991) [Tech. Phys. 36, 620 (1991)].

    Google Scholar 

  7. V. P. Demkin, B. V. Korolev, and S. V. Mel’nichuk, Fiz. Plazmy 21, 81 (1995) [Plasma Phys. Rep. 21, 76 (1995)].

    Google Scholar 

  8. G. V. Kolbychev and N. V. Ptashnik, Opt. Atmos. Okeana 12, 1070 (1999).

    Google Scholar 

  9. G. V. Kolbychev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 60 (2002).

  10. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Éksp. Teor. Fiz. 77, 264 (2003) [JETP Lett. 77, 221 (2003)].

    Google Scholar 

  11. A. N. Tkachev and S. I. Yakovlenko, Pis’ma Zh. Tekh. Fiz. 29(16), 54 (2003) [Tech. Phys. Lett. 29, 683 (2003)].

    Google Scholar 

  12. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  13. A. V. Phelps and Z. L. Petrovic, Plasma Sources Sci. Technol. 8(3), R21 (1999).

    Article  ADS  Google Scholar 

  14. A. V. Phelps, Plasma Sources Sci. Technol. 10(2), 329 (2001).

    Article  ADS  Google Scholar 

  15. D. Maric, K. Kutasi, G. Malovic, et al., Eur. Phys. J. D 21(1), 73 (2002).

    Article  ADS  Google Scholar 

  16. Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965; Mir, Moscow, 1967).

    Google Scholar 

  17. F. F. Chen, Phys. Fluids 25, 2385 (1982).

    Article  MATH  ADS  Google Scholar 

  18. B. V. Alekseev and V. A. Kotel’nikov, Probe Method for Plasma Diagnostics (Énergoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  19. A. L. Ward, Phys. Rev. A 112, 1852 (1958).

    Article  ADS  Google Scholar 

  20. A. L. Ward, J. Appl. Phys. 33(9), 149 (1962).

    Article  Google Scholar 

  21. E. J. Lauer, S. S. Yu, and D. M. Cox, Phys. Rev. A 23, 2250 (1981).

    Article  ADS  Google Scholar 

  22. Yu. N. Sytsko and S. I. Yakovlenko, Fiz. Plazmy 2, 63 (1976) [Sov. J. Plasma Phys. 2, 34 (1976)].

    Google Scholar 

  23. H. J. Helm, J. Phys. B 10, 3683 (1977).

    Article  ADS  Google Scholar 

  24. R. D. Rundel, D. E. Nitz, K. Smith, et al., Phys. Rev. A A19, 33 (1979).

    Article  ADS  Google Scholar 

  25. L. A. La Verne and A. J. Mozumder, Phys. Chem. 89, 4219 (1985).

    Article  Google Scholar 

  26. P. Hartmann, H. Matsuo, Y. Ohtsuka, et al., Jpn. J. Appl. Phys. 42, 3633 (2003).

    Article  Google Scholar 

  27. Yu. D. Korolev, G. A. Mesyats, and V. B. Ponomarev, Prikl. Mekh. Tekh. Fiz., No. 6, 25 (1979).

  28. G. V. Kolbychev, P. D. Kolbycheva, and I. V. Ptashnik, Zh. Tekh. Fiz. 66(2), 1 (1996) [Tech. Phys. 41, 144 (1996)].

    Google Scholar 

  29. G. A. Mesyats, Ectons (Nauka, Yekaterinburg, 1993), Vol. 2 [in Russian].

    Google Scholar 

  30. A. A. Emel’yanov, E. A. Emel’yanova, and I. O. Serikov, Pis’ma Zh. Tekh. Fiz. 30(11), 1 (2004) [Tech. Phys. Lett. 30, 445 (2004)].

    Google Scholar 

  31. A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Appl. Phys. Lett. 86, 151503 (2005).

    Article  Google Scholar 

  32. A. V. Phelps, C. H. Greene, and J. P. Burke, J. Phys. B 33, 2965 (2000).

    Article  ADS  Google Scholar 

  33. R. A. Baragiola, E. V. Alonso, J. Ferron, and A. Oliva-Floria, Surf. Sci. 90, 240 (1979).

    Article  Google Scholar 

  34. P. Varga and H. Winter, in Particle Induced Electron Emission II, Ed. by G. Höhler (Springer-Verlag, Berlin, 1992), Springer Tracts Mod. Phys. 123, 149 (1992).

    Google Scholar 

  35. F. J. Heer and R. H. H. Jansen, J. Phys. B 10, 3741 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Bokhan, P.A. Bokhan, D.É. Zakrevsky, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 7, pp. 599–612.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokhan, A.P., Bokhan, P.A. & Zakrevsky, D.É. Means for efficient electron beam generation in wide-aperture open-discharge light sources. Plasma Phys. Rep. 32, 549–562 (2006). https://doi.org/10.1134/S1063780X06070038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06070038

PACS numbers

Navigation