Skip to main content
Log in

Magnetic geometry, plasma profiles, and stability

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The history of the stability of short wavelength modes, such as MHD instabilities and drift waves, has been a long and tortuous one as increasingly realistic representations of the equilibrium magnetic geometry have been introduced. Early work began with simple slab or cylindrical models where plasma profiles and magnetic shear were seen to play key roles. Then the effects of toroidal geometry, in particular the constraints imposed by periodicity in the presence of magnetic shear, provided a challenge for theory, which was met by the ballooning transformation. More recently the limitations on the conventional ballooning theory arising from effects such as toroidal rotation shear, low magnetic shear, and the presence of the plasma edge have been recognized. These have led in turn to modifications and extensions of this theory. These developments have produced a continuously changing view of the stability of the “universal” drift wave, for example. After a survey of this background, we describe more recent work of relevance to currently important topics, such as transport barriers characterized by the presence of strong rotation shear and low magnetic shear and the edge localized modes that occur in H-mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Tserkovnikov, Zh. Éksp. Teor. Fiz. 32, 69 (1957) [Sov. Phys. JETP 5, 58 (1957)].

    Google Scholar 

  2. L. I. Rudakov and R. Z. Sagdeev, Dokl. Akad. Nauk SSSR 138, 581 (1961) [Sov. Phys. Dokl. 6, 415 (1961)].

    MathSciNet  Google Scholar 

  3. B. B. Kadomtsev and A. V. Timofeev, Dokl. Akad. Nauk SSSR 146, 581 (1962) [Sov. Phys. Dokl. 7, 826 (1963)].

    Google Scholar 

  4. N. A. Krall and M. N. Rosenbluth, Phys. Fluids 5, 1435 (1962).

    Article  ADS  Google Scholar 

  5. J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. London A 365, 1 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. W. Connor and J. B. Taylor, Phys. Fluids 30, 3180 (1987).

    Article  MATH  ADS  Google Scholar 

  7. J. W. Connor and R. J. Hastie, Plasma Phys. Controlled Fusion 46, 1501 (2004).

    Article  ADS  Google Scholar 

  8. N. A. Krall and M. N. Rosenbluth, Phys. Fluids 8, 1488 (1965).

    Article  Google Scholar 

  9. L. D. Pearlstein and H. L. Berk, Phys. Rev. Lett. 23, 220 (1969).

    Article  ADS  Google Scholar 

  10. D. W. Ross and S. M. Mahajan, Phys. Rev. Lett. 40, 324 (1978).

    Article  ADS  Google Scholar 

  11. K. T. Tsang, P. J. Catto, J. C. Whitson, et al., Phys. Rev. Lett. 40, 327 (1978).

    Article  ADS  Google Scholar 

  12. T. M. Antonsen, Jr., Phys. Rev. Lett. 41, 33 (1978).

    Article  ADS  Google Scholar 

  13. S. P. Hirshman and K. Molvig, Phys. Rev. Lett. 42, 648 (1979).

    Article  ADS  Google Scholar 

  14. K. V. Roberts and J. B. Taylor, Phys. Fluids 8, 315 (1965).

    Article  ADS  Google Scholar 

  15. B. B. Kadomtsev and O. P. Pogutse, Nucl. Fusion 11, 67 (1971).

    Google Scholar 

  16. J. B. Taylor, in Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Berchtesgaden, 1976 (IAEA, Vienna, 1977), Vol. 2, p. 323.

    Google Scholar 

  17. Y. Kishimoto, J. Y. Kim, T. Fukuda, et al., in Proceedings of the 16th International Conference on Fusion Energy, Montreal, 1996 (IAEA, Vienna, 1997), Vol. 2, p. 581.

    Google Scholar 

  18. J. Y. Kim, Y. Kishimoto, M. Wakatani, and T. Tajima, Phys. Plasmas 3, 3689 (1996).

    Article  ADS  Google Scholar 

  19. A. H. Glasser, in Proceedings of the Finite-Beta Workshop, Varenna, 1977, Ed. by B. Coppi and W. Sadowski (National Technical Information Service, Springfield, VA, 1979) p. 55.

    Google Scholar 

  20. Y. C. Lee and J. W. Van Dam, in Proceedings of the Finite-Beta Workshop, Varenna, 1977, Ed. by B. Coppi and W. Sadowski (National Technical Information Service, Springfield, VA, 1979), p. 93.

    Google Scholar 

  21. F. Pegoraro and T. J. Schep, Phys. Fluids 8, 315 (1981).

    MathSciNet  Google Scholar 

  22. J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Chen and C. Z. Cheng, Phys. Fluids 30, 3180 (1987).

    Article  ADS  Google Scholar 

  24. R. J. Hastie, K. W. Hesketh, and J. B. Taylor, Nucl. Fusion 19, 1223 (1979).

    ADS  Google Scholar 

  25. F. Romanelli and F. Zonca, Phys. Fluids B 5, 4081 (1993).

    Article  ADS  Google Scholar 

  26. J. W. Connor, J. B. Taylor, and H. R. Wilson, Phys. Rev. Lett. 70, 1803 (1993).

    Article  ADS  Google Scholar 

  27. D. Lortz and J. Nührenberg, Phys. Lett. A 68, 49 (1978).

    Article  ADS  Google Scholar 

  28. L. Chen, S. Briguglio, and F. Romanelli, Phys. Fluids B 3, 611 (1991).

    Article  ADS  Google Scholar 

  29. O. P. Pogutse and É. I. Yurchenko, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Atomizdat, Moscow, 1982; Consultants Bureau, New York, 1986), Vol. 11.

    Google Scholar 

  30. O. P. Pogutse and É. I. Yurchenko, Pis’ma Zh. Éksp. Teor. Fiz. 28, 344 (1978) [JETP Lett. 28, 318 (1978)].

    Google Scholar 

  31. R. Gianella, L. Lauro-Taroni, M. Mattioli, et al., Nucl. Fusion 34, 1185 (1994).

    Article  ADS  Google Scholar 

  32. A. L. Rogister, Nucl. Fusion 41, 1101 (2001).

    Article  ADS  Google Scholar 

  33. J. Candy, M. N. Rosenbluth, and R. E. Waltz, Phys. Plasmas 11, 1879 (2004).

    Article  ADS  Google Scholar 

  34. J. B. Taylor, J. W. Connor, and H. R. Wilson, Plasma Phys. Controlled Fusion 35, 1063 (1993).

    Article  ADS  Google Scholar 

  35. R. L. Dewar and A. H. Glasser, Phys. Fluids 26, 3038 (1983).

    Article  MATH  ADS  Google Scholar 

  36. R. L. Dewar, in Theory of Fusion Plasmas, Ed. by A. Bondeson, E. Sindoni, and F. Troyon (Società Italiana di Fisica, Bologna, 1987), p. 107.

    Google Scholar 

  37. Y. Z. Zhang and S. M. Mahajan, Phys. Lett. A 157, 133 (1991).

    Article  ADS  Google Scholar 

  38. R. L. Dewar, Plasma Phys. Controlled Fusion 39, 453 (1997).

    Article  ADS  Google Scholar 

  39. J. W. Connor, R. J. Hastie, and J. B. Taylor, Plasma Phys. Controlled Fusion 46, B1 (2004).

    Article  Google Scholar 

  40. K. Y. Kim and M. Wakatani, Phys. Rev. Lett. 73, 2200 (1994).

    Article  ADS  Google Scholar 

  41. J. B. Taylor, H. R. Wilson, and J. W. Connor, Plasma Phys. Controlled Fusion 38, 243 (1996).

    Article  ADS  Google Scholar 

  42. F. L. Waelbroeck and L. Chen, Phys. Fluids B 3, 601 (1991).

    Article  ADS  Google Scholar 

  43. J. B. Taylor and H. R. Wilson, Plasma Phys. Controlled Fusion 38, 1999 (1996).

    Article  ADS  Google Scholar 

  44. J. W. Connor, R. J. Hastie, and T. J. Martin, in Theory of Fusion Plasmas, Ed. by J. W. Connor, O. Sauter, and E. Sindoni (Società Italiana di Fisica, Bologna, 2004), p. 457.

    Google Scholar 

  45. J. W. Connor, R. J. Hastie, H. R. Wilson, and R. L. Miller, Phys. Plasmas 5, 2687 (1998).

    Article  ADS  Google Scholar 

  46. H. R. Wilson, J. W. Connor, A. R. Field, et al., Phys. Plasmas 6, 1925 (1999).

    Article  ADS  Google Scholar 

  47. X. Garbet, L. Laurent, F. Mourgues, et al., in Proceedings of the 16th European Conference on Controlled Fusion and Plasma Physics, Venice, 1989, ECA 13B, 299 (1989).

    Google Scholar 

  48. W. A. Cooper, D. B. Singleton, and R. L. Dewar, Phys. Plasmas 3, 275 (1996).

    Article  ADS  Google Scholar 

  49. M. A. Beer, S. C. Cowley, and G. W. Hammett, Phys. Plasmas 2, 2687 (1995).

    Article  ADS  Google Scholar 

  50. H. R. Wilson and S. C. Cowley, Phys. Rev. Lett. 92, 175006 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 7, pp. 588–598.

Based on an invited talk given at the 11th European Fusion Theory Meeting, Aix-en-Provence, France, September 2005. The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, J.W. Magnetic geometry, plasma profiles, and stability. Plasma Phys. Rep. 32, 539–548 (2006). https://doi.org/10.1134/S1063780X06070026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X06070026

PACS numbers

Navigation