Skip to main content
Log in

Geant4 Simulations of Cherenkov Radiation Spectral Lines. Comparison with Experimental and Theoretical Results

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Most Cherenkov experiments focus on detecting a continuous Cherenkov radiation spectrum, in principle, from the sub-THz/THz range to “soft” X-ray. However, in the recent experiment on the Mainz Microtron MAMI, Germany, the possibility of detecting quasi-monochromatic Cherenkov peaks was confirmed using a high-energy electron beam and a thin quartz plate. Such experimental results were compared with the polarization currents model results, and a fair agreement was obtained. In the chase for even better agreement between theoretical and experimental results, it was decided to try out the Geant4 toolkit. Therefore, this paper aims to present Geant4 obtained results and compare them with both experimental and polarization currents model’s calculations. The first tryout with pencil-like electron beams, i.e., conditions used in analytical calculations, gave rather bad results. However, more realistic Gaussian beams gave much better results, even comparable to the analytical model results. Moreover, the results obtained for both beams are significant in drawing conclusions and open many possibilities for future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. V. Jelley, Cherenkov Radiation and its Applications (Pergamon Press, New York, 1958; Izd. Inostr. Lit., Moscow, 1960)

  2. P. A. Cherenkov, “Visible glow of pure liquids under the influence of radiation,” Compt. Rend. Acad. Sci. URSS 2, 451-454 (1934).

    Google Scholar 

  3. S. I. Vavilov, “About the possible causes of the blue glow of liquids,” Compt. Rend. Acad. Sci. URSS 2, 457–459 (1934).

    Google Scholar 

  4. I. M. Frank and I. E. Tamm, “Coherent visible radiation of fast electrons passing through matter,” Compt. Rend. Acad. Sci. URSS 14, 109-114 (1937).

    MATH  Google Scholar 

  5. R. Dolenec, S. Korpar, P. Križan, and R. Pestotnik, “Efficiency of a Cherenkov based PET module with an array of SiPMs,” Nucl. Instrum. Methods Phys. Res., Sect. A 952, 162327 (2020). https://doi.org/10.1016/j.nima.2019.06.068

    Article  Google Scholar 

  6. V. V. Plyusnin, L. Jakubowski, J. Zebrowski, P. Duarte, K. Malinowski, H. Fernandes, C. Silva, M. Rabinski, and M. J. Sadowski, “Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices,” Rev. Sci. Instrum. 83, 083505 (2012). https://doi.org/10.1063/1.4740512

    Article  ADS  Google Scholar 

  7. S. Gambetta, “The LHCb RICH detectors: Operations and performance,” Nucl. Inst. Methods Phys. Res., Sect. A 952, 161882 (2020). https://doi.org/10.1016/j.nima.2019.02.009

    Article  Google Scholar 

  8. M. Lenti, “Final performances of the NA62 RICH detector,” J. Instrum. 15, C03027 (2020). https://doi.org/10.1088/1748-0221/15/03/C03027

    Article  Google Scholar 

  9. Y. Suzuki, “The Super-Kamiokande experiment,” Eur. Phys. J. C 79, 298 (2019). https://doi.org/10.1140/epjc/s10052-019-6796-2

    Article  ADS  Google Scholar 

  10. S. N. Galyamin, A. V. Tyukhtin, A. Kanareykin, and P. Schoessow, “Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary,” Phys. Rev. Lett. 103, 194802 (2009). https://doi.org/10.1103/PhysRevLett.103.194802

    Article  ADS  Google Scholar 

  11. A. P. Kobzev, “The mechanism of Vavilov-Cherenkov radiation,” Phys. Part. Nucl. 41, 452—470 (2010).

    Article  Google Scholar 

  12. I. E. Tamm, “Radiation emitted by uniformly moving electrons,” J. Phys. USSR 1, 439–454 (1939).

    MATH  Google Scholar 

  13. A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103, 095003 (2009). https://doi.org/10.1103/PhysRevLett.103.095003

    Article  ADS  Google Scholar 

  14. W. Knulst, O. J. Luiten, M. J. van der Wiel, and J. Verhoeven, “Observation of narrow-band Si L-edge Čerenkov radiation generated by 5-MeV electrons,” Appl. Phys. Lett. 79, 2999–3001 (2001). https://doi.org/10.1063/1.1415049

    Article  ADS  Google Scholar 

  15. Y. Takabayashi, E. I. Fiks, and Yu. L. Pivovarov, “First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal,” Phys. Lett. A 379, 1032–1035 (2015). https://doi.org/10.1016/j.physleta.2015.01.036

    Article  Google Scholar 

  16. A. Potylitsyn, G. Kube, A. Novokshonov, A. Vukolov, S. Gogolev, B. Alexeev, P. Klag, and W. Lauth, “First observation of quasi-monochromatic optical Cherenkov radiation in a dispersive medium (quartz),” Phys. Lett. A 417, 127680 (2021). https://doi.org/10.1016/j.physleta.2021.127680

    Article  Google Scholar 

  17. D. V. Karlovets and A. P. Potylitsyn, “Universal description for different types of polarization radiation,” (2010). arXiv: 0908.2336. https://doi.org/10.48550/arXiv.0908.2336

  18. V. E. Pafomov, “Radiation of a Charged Particle in the Presence of a Separating Boundary,” in Nuclear Physics and Interaction of Particles with Matter, Vol. 44, Ed. by D. V. Skobel’tsyn (Springer, Boston, MA, 1971). https://doi.org/10.1007/978-1-4757-6032-3_3

  19. A. P. Potylitsyn and S. Yu. Gogolev, “Vavilov-Cherenkov radiation in an inclined dielectric plate and violation of azimuthal symmetry,” Phys. Part. Nucl. Lett. 16, 127–132 (2019). https://doi.org/10.1134/S1547477119020110

    Article  Google Scholar 

  20. S. Yu. Gogolev and A. P. Potylitsyn, “Azimuthal asymmetry of coherent Cherenkov radiation from a tilted bunch,” Phys. Lett. A 383, 888–893 (2019). https://doi.org/10.1016/j.physleta.2018.12.004

    Article  ADS  MATH  Google Scholar 

  21. K. Nanbu, Y. Saito, H. Saito, S. Kashiwagi, F. Hinode, T. Muto, H. Hama, “Bunch length measurement employing Cherenkov radiation form a thin silica aerogel,” Particles 1. 305—314 (2018) https://doi.org/10.3390/particles1010025

    Article  Google Scholar 

  22. S. Agostinelli et al. (Geant4 Collab.), “Geant4–a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).

    Google Scholar 

  23. J. Allison et al. (Geant4 Collab.), “Recent developments in Geant4,” Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186–225 (2016).

    Google Scholar 

  24. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” App. Opt. 46, 8118–8133 (2007). https://doi.org/10.1364/AO.46.008118

    Article  ADS  Google Scholar 

  25. W. S. Rodney and R. J. Spindler, “Index of refraction of fused-quartz glass for ultraviolet, visible, and infrared wavelengths,” J. Res. Nat. Bur. Stand. 53, 2531 (1954).

    Article  Google Scholar 

  26. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).

    Article  ADS  Google Scholar 

  27. C. Z. Tan, “Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,” J. Non-Cryst. Solids 223, 158–163 (1998).

    Article  ADS  Google Scholar 

  28. V. N. Ivanchenko, O. Kadri, M. Marie, and L. Urban, “Geant4 models for simulation of multiple scattering,” J. Phys.: Conf. Ser. 219, 032045 (2010). https://doi.org/10.1088/1742-6596/219/3/032045

    Article  Google Scholar 

  29. L. Urbán, “A model for multiple scattering in Geant4,” CERN Technical Report (CERN, Geneva, 2006). URL: http://cds.cern.ch/record/1004190

Download references

Funding

This work was supported by the Ministry of Science of the Russian Federation (project no. Prioritet-2030-NIP/IZ-005-0000-2030)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Đurnić.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Đurnić, B., Potylitsyn, A. & Bogdanov, A. Geant4 Simulations of Cherenkov Radiation Spectral Lines. Comparison with Experimental and Theoretical Results. Phys. Part. Nuclei 54, 1142–1151 (2023). https://doi.org/10.1134/S1063779623060278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623060278

Keywords:

Navigation