Skip to main content
Log in

Optoelectronic Transistor Effect in a Polar Quantum System Driven by a Trichromatic Field

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The fluorescent radiative properties of a two-level quantum polar system with broken spatial inversion symmetry being realized as a model of a single-electron two-level “atom” with permanent atomic electric dipole moment, so that its electric dipole operator diagonal matrix elements are not equal to each other, were examined. In practice, such a system can be realized as an asymmetric quantum dot. A particular case when this system is driven by a trichromatic external field, with two high-frequency bichromatic field components of equal Rabi frequencies and carrier frequencies being placed symmetrically around the atomic transition frequency, and one more low-frequency component being in resonance with the Rabi frequency of the high-frequency components, was analyzed. It was shown that the high-frequency spectral properties of the fluorescent radiation can be altered with equal efficiency either by controlling the intensity of the low-frequency component of the trichromatic driving field or by changing the degree of the quantum dot asymmetry. Possible options to apply this potentially useful effect for practical purposes in the field of optoelectronics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev. 188, 1969—1975 (1969).

    Article  ADS  Google Scholar 

  2. F. Schuda, C. R. Stroud, Jr., and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B: At. Mol. Phys. 7, L198–L202 (1974).

    Article  ADS  Google Scholar 

  3. F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett. 35, 1426—1429 (1975).

    Article  ADS  Google Scholar 

  4. W. Hartig, W. Rasmussen, R. Schieder, and H. Walther, “Study of the frequency distribution of the fluorescent light induced by monochromatic radiation,” Z. Phys. A 278, 205—210 (1976).

    ADS  Google Scholar 

  5. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett. 99, 187402 (2007).

    Article  ADS  Google Scholar 

  6. S. Unsleber, S. Maier, D. McCutcheon, Y-M. He, M. Dambach, M. Gschrey, N. Gregersen, J. Mørk, S. Reitzenstein, S. Höfling, C. Schneider, and M. Kamp, “Observation of resonance fluorescence and the Mollow triplet from a coherently driven site-controlled quantum dot,” Optica 2, 1072—1077 (2015).

    Article  ADS  Google Scholar 

  7. C. H. H. Schulte, J. Hansom, A. E. Jones, C. Matthiesen, C. Le Gall, and M. Atatüre, “Quadrature squeezed photons from a two-level system,” Nature 525, 222—225 (2015).

    Article  ADS  Google Scholar 

  8. V. A. Kovarskii, “Quantum processes in biological molecules. Enzyme catalysis,” Phys.-Usp. 42, 797—815 (1999).

    Article  Google Scholar 

  9. Q. Xie, Zh. Honghua, M. T. Batchelor, and Ch. Lee, “The quantum Rabi model: Solution and dynamics,” J. Phys. A: Math. Theor. 50, 113001 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  10. I. Yu. Chestnov, V. A. Shahnazaryan, A. P. Alodjants, and I. A. Shelykh, “Terahertz lasing in ensemble of asymmetric quantum dots,” ACS Photonics 4, 2726—2737 (2017).

    Article  Google Scholar 

  11. P. Gladysz, P. Wcisio, and K. Siowik, “Propagation of optically tunable coherent radiation in a gas of polar molecules,” Sci. Rep. 10, 17615 (2020).

    Article  ADS  Google Scholar 

  12. M. Koppenhöfer and M. Marthaler, “Creation of a squeezed photon distribution using artificial atoms with broken inversion,” Phys. Rev. A 93, 023831 (2016).

    Article  ADS  Google Scholar 

  13. L.-T. Shen, Z.-B. Yang, H.-Z. Wu, and S.-B. Zheng, “Ground state of an ultrastrongly coupled qubit-oscillator system with broken inversion symmetry,” Phys. Rev. A 93, 063837 (2016).

    Article  ADS  Google Scholar 

  14. I. G. Savenko, O. V. Kibis, and I. A. Shelykh, “Asymmetric quantum dot in a microcavity as a nonlinear optical element,” Phys. Rev. A 85, 053818 (2012).

    Article  ADS  Google Scholar 

  15. E. Paspalakis, J. Boviatsis, and S. Baskoutas, “Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots,” Appl. Phys. 114, 153107 (2013).

    Article  Google Scholar 

  16. A. Fashina and T. Nyokong, “Nonlinear optical response of tetra and mono substituted phthalocyanine complexes,” J. Lumin. 71, 71—79 (2015).

    Article  Google Scholar 

  17. O. V. Kibis, G. Ya. Slepyan, S. A. Maksimenko, and A. Hoffmann, “Matter coupling to strong electromagnetic fields in two-level quantum systems with broken inversion symmetry,” Phys. Rev. Lett. 102, 023601 (2009).

    Article  ADS  Google Scholar 

  18. A. V. Soldatov, “Laser frequency down-conversion by means of a monochromatically driven two-level system,” Mod. Phys. Lett. B 30, 1650331 (2016).

    Article  ADS  Google Scholar 

  19. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Fluorescence in a quantum system with violated symmetry,” Moscow Univ. Phys. Bull. 73, 154—161 (2018).

    Article  ADS  Google Scholar 

  20. A. V. Soldatov, “Broadband EM radiation amplification by means of a monochromatically driven two-level system,” Mod. Phys. Lett. B 34, 1750027 (2017).

    Article  Google Scholar 

  21. N. N. Bogolyubov, Jr. and A. V. Soldatov, “EM field frequency down-conversion in a quantum two-level system damped by squeezed vacuum reservoir,” Phys. Part. Nucl. 51, 762—765 (2020).

    Article  Google Scholar 

  22. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Electromagnetic radiation amplification by means of a driven two-level system damped by broadband squeezed vacuum reservoir,” J. Phys. Conf. Ser. 1560, 012001 (2020).

    Article  Google Scholar 

  23. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Low-frequency fluorescence spectrum of a laser driven polar quantum emitter damped by squeezed vacuum with finite bandwidth,” J. Phys. Conf. Ser. 2056, 012001 (2021).

    Article  Google Scholar 

  24. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Fluorescence spectrum of a laser driven polar quantum emitter damped by degenerate squeezed vacuum with finite bandwidth,” Appl. Math. Inf. Sci. 16, 235—241 (2022).

    Google Scholar 

  25. N. N. Bogolyubov, Jr. and A. V. Soldatov, “Probe-absorption spectrum of a polar quantum emitter in a squeezed finite-bandwidth vacuum,” Phys. Part. Nucl. Lett. 19, 58—65 (2022).

    Article  Google Scholar 

  26. M. O. Scully and M. Zubairy, Quantum Optics (Cambridge University Press, 2001; Fizmatlit, 2003).

  27. R. R. Puri, Mathematical Methods of Quantum Optics in Springer Series in Optical Sciences, Vol. 79 (Springer-Verlag, 2001).

    Book  Google Scholar 

  28. H. Carmichael, An Open Systems Approach to Quantum Optics. Lecture Notes in Physics, Vol. 18 (Springer-Verlag, Berlin, 1993).

    Book  MATH  Google Scholar 

  29. G. S. Agarwal, Quantum Optics, Ed. by G. Höhler, in Springer Tracts in Modern Physics, Vol. 70 (Springer, Berlin, 2001).

    Google Scholar 

  30. A. Joshi and S. S. Hassan, “On the nature of the resonance fluorescence spectrum of a driven two-level atom in an off-resonant squeezed vacuum,” J. Phys. B: At. Mol. Opt. Phys. 30, L557–L564 (1997).

    Article  ADS  Google Scholar 

  31. M. Lax, “Quantum noise. XI. Multitime correspondence between quantum and classical stochastic processes,” Phys. Rev. 172, 350—361 (1968).

    Article  ADS  Google Scholar 

  32. Z. Ficek and S. Swain, Quantum Interference and Coherence: Theory and Experiments, in Springer Series in Optical Sciences, Vol. 100 (Springer, New York, 2005).

    Google Scholar 

  33. Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A 48, 3092—3104 (1993).

    Article  ADS  Google Scholar 

  34. Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A 53, 4275—4287 (1996).

    Article  ADS  Google Scholar 

  35. Z. Ficek, J. Seke, A. V. Soldatov, and G. Adam, “Fluorescence spectrum of a two-level atom driven by a multiple modulated field,” Phys. Rev. A 64, 013813 (2001).

    Article  ADS  Google Scholar 

  36. G. Yu. Kryuchkov, “Resonance fluorescence in a bichromatic field and photon correlation between spectral lines,” Opt. Commun. 54, 19—22 (1985).

    Article  ADS  Google Scholar 

  37. Y. Zhu, Q. Wu, A. Lezawa, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A 41, 6574—6576 (1990).

    Article  ADS  Google Scholar 

  38. H. S. Freedhoff and Z. Chen, “Resonance fluorescence of a two-level atom in a strong bichromatic field,” Phys. Rev. A 41, 6013—6022 (1990);

    Article  ADS  Google Scholar 

  39. Erratum: 46, 7328(E) (1992).

  40. S. P. Tewari and M. K. Kumari, “Spectrum of resonance fluorescence from a two-level atom interacting with 100% amplitude-modulated intense radiation,” Phys. Rev. A 41, 5273—5276 (1990).

    Article  ADS  Google Scholar 

  41. G. S. Agarwal, Y. Zhu, D. J. Gauthier, and T. W. Mossberg, “Spectrum of radiation from two-level atoms under intense bichromatic excitation,” J. Opt. Soc. Am. B 8, 1163—1167 (1991).

    Article  ADS  Google Scholar 

  42. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (20030.

  43. Y.-J. Lu et al., “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450—453 (2012).

    Article  ADS  Google Scholar 

  44. M. A. Noginov et al., “Demonstration of a spaser-based nanolaser,” Nature 460, 1110—1113 (2009).

    Article  ADS  Google Scholar 

  45. S. Xiao et al., “Loss-free and active optical negative-index metamaterials,” Nature 466, 735—740 (2010).

    Article  ADS  Google Scholar 

  46. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O’Reilly, “Dipole nanolaser,” Phys. Rev. A 71, 063812 (2005).

    Article  ADS  Google Scholar 

  47. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyansky, “Spectrum of surface plasmons excited by spontaneous quantum dot transitions,” JETP 117, 205—213 (2013).

    Article  ADS  Google Scholar 

  48. E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, A. V. Dorofeenko, and A. A. Lisyansky, “Modification of the resonance fluorescence spectrum of a two-level atom in the near field of a plasmonic nanoparticle,” JETP Lett. 97, 452 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Bogolyubov Jr. or A. V. Soldatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolyubov, N.N., Soldatov, A.V. Optoelectronic Transistor Effect in a Polar Quantum System Driven by a Trichromatic Field. Phys. Part. Nuclei 54, 1132–1141 (2023). https://doi.org/10.1134/S1063779623060266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623060266

Keywords:

Navigation