Skip to main content
Log in

Scaling of Collective Flow of Charged and Identified Hadrons in Au + Au Collisions at \(\sqrt {{{s}_{{NN}}}} = 11.5 - 62.4 \) GeV from the STAR Experiment

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Heavy-ion collisions create a hot and dense matter called Quark-Gluon Plasma (QGP). Azimuthal anisotropy of produced particles is sensitive to the transport properties of QGP (the equation of state, speed of sound and specific shear viscosity) and may provide information about initial state of the collision. In this work, we report results for elliptic (\({{\upsilon }_{2}}\)) and triangular (\({{\upsilon }_{3}}\)) flow of charged and identified hadrons (\({{\pi }^{ \pm }},{{K}^{ \pm }},p,\bar {p}\)) in Au + Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment at RHIC. Measurements of the collective flow coefficients \({{\upsilon }_{2}}\) and \({{\upsilon }_{3}}\) are presented as a function of particle transverse momentum (\({{p}_{{\text{T}}}}\)) and collision centrality. In addition the number of constituent quark scaling will be presented for these energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974).

    Article  ADS  Google Scholar 

  2. E. V. Shuryak, “Quark-gluon plasma and hadronic production of leptons, photons and psions,” Phys. Lett. B 78, 150 (1978).

    Article  ADS  Google Scholar 

  3. L. Susskind, “Lattice models of quark confinement at high temperature,” Phys. Rev. D 20, 2610–2618 (1979).

    Article  ADS  Google Scholar 

  4. M. M. Aggarwal et al. (STAR Collab.), “An experimental exploration of the QCD phase diagram: The search for the critical point and the onset of de-confinement,” arXiv:1007.2613 [nucl-ex].

  5. S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions,” Z. Phys. C 70, 665–671 (1996).

    Article  Google Scholar 

  6. A. M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions,” Phys. Rev. C 58, 1671–1678 (1998).

    Article  ADS  Google Scholar 

  7. J. E. Bernhard, J. S. Moreland, and S. A. Bass, “Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma,” Nat. Phys. 15, 1113–1117 (2019).

    Article  Google Scholar 

  8. P. Huovinen and P. Petreczky, “QCD equation of state and hadron resonance gas,” Nucl. Phys. A 837, 26–53 (2010). arXiv:0912.2541 [hep-ph].

    Article  ADS  Google Scholar 

  9. L. Adamczyk et al. (STAR Collab.), “Azimuthal anisotropy in Cu + Au collisions at √s NN = 200 GeV,” Phys. Rev. C 98, 014915 (2018).

    Article  ADS  Google Scholar 

  10. J. Adam et al. (ALICE Collab.), “Higher harmonic flow coefficients of identified hadrons in Pb–Pb collisions at √s NN = 2.76 TeV,” J. High Energy Phys. 09, 164 (2016). arXiv:1606.06057.

  11. C. Gale, S. Jeon, B. Schenke, P. Tribedy, and R. Venugopalan, “Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and viscous fluid dynamics,” Phys. Rev. Lett. 110, 012302 (2013).

    Article  ADS  Google Scholar 

  12. L. Adamczyk et al. (STAR Collab.), “Elliptic flow of identified hadrons in Au + Au collisions at √s NN = 7.7–62.4 GeV,” Phys. Rev. C 88, 014902 (2013). arXiv: 1301.2348 [nucl-ex].

    Article  ADS  Google Scholar 

  13. L. Adamczyk et al. (STAR Collab.), “Inclusive charged hadron elliptic flow in Au + Au collisions at √s NN = 7.7–39 GeV,” Phys. Rev. C 86, 054908 (2012). arXiv: 1206.5528 [nucl-ex].

    Article  ADS  Google Scholar 

  14. I. Selyuzhenkov and S. Voloshin, “Effects of nonuniform acceptance in anisotropic flow measurements,” Phys. Rev. C 77, 034904 (2008). arXiv:0707.4672 [nucl-th].

    Article  ADS  Google Scholar 

  15. S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions,” Landolt-Bornstein 23, 293–333 (2010). arXiv: 0809.2949 [nucl-ex].

  16. B. Alver and G. Roland, “Collision-geometry fluctuations and triangular flow in heavy-ion collisions,” Phys. Rev. C 81, 054905 (2010). arXiv:1003.0194 [nucl-th].

    Article  ADS  Google Scholar 

  17. G. Torrieri, “Scaling of flow in heavy ion collisions and the low-energy frontier,” Eur. Phys. J. A 52, 249 (2016). arXiv:1512.04704.

  18. C. Adler et al. (STAR Collab.), “Azimuthal anisotropy of \(K_{s}^{0}\) and Λ + Λ-bar production at midrapidity from Au + Au collisions at √s NN = 130 GeV,” Phys. Rev. Lett. 89, 132301 (2002).

    Article  ADS  Google Scholar 

  19. J. Adams, et al. (STAR Collab.), “Multistrange baryon elliptic flow in Au + Au collisions at √s NN = 200 GeV,” Phys. Rev. Lett. 95, 122301 (2005).

    Article  ADS  Google Scholar 

  20. S. Afanasiev et al. (STAR Collab.), “Elliptic flow for mesons and (anti)deuterons in Au+Au collisions at √s NN = 200 GeV,” Phys. Rev. Lett. 99, 052301 (2007).

    Article  ADS  Google Scholar 

  21. B. I. Abelev et al. (STAR Collab.), “Centrality dependence of charged hadron and strange hadron elliptic flow from √s NN = 200 GeV Au + Au collisions,” Phys. Rev. C 77, 054901 (2008).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, Project “Fundamental properties of elementary particles and cosmology” no. 0723-2020-0041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Povarov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povarov, A. Scaling of Collective Flow of Charged and Identified Hadrons in Au + Au Collisions at \(\sqrt {{{s}_{{NN}}}} = 11.5 - 62.4 \) GeV from the STAR Experiment. Phys. Part. Nuclei 54, 619–623 (2023). https://doi.org/10.1134/S1063779623040263

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040263

Navigation