Skip to main content
Log in

Beta-Decay Rate as an Important Factor of Production of Heavy Nuclei in the r-Process

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this work, nucleosynthesis of heavy nuclei in the r-process is modelled. The influence of beta-decay rates calculated within different theoretical models on abundance of heavy nuclei is studied. It is shown that dynamics of nucleosynthesis of new elements and final abundance of heavy nuclei strongly depend on the beta-decay model used in calculations of the r-process. A possibility of using astrophysical calculations for testing predicted nuclear data defined only theoretically is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. I. V. Panov, “What path the r-process takes: Extreme cases and comparison with observations,” Astron. Lett. 29, 163—169 (2003).

    Article  ADS  Google Scholar 

  2. I. V. Panov and Yu. S. Lutostansky, “Dependence of the abundance of nuclei formed in the r-process on the rate of nucleosynthesis,” Yad. Fiz. 83, 349—355 (2020).

    Google Scholar 

  3. E. M. Burbridge et al., “Synthesis of the elements in stars,” Rev. Mod. Phys. 29, 547–650 (1957).

    Article  ADS  Google Scholar 

  4. P. A. Seeger, W. A. Fowler, and D. D. Clayton, “Nucleosynthesis of heavy elements by neutron capture,” Astrophys. J. 11 (Suppl.), 121—166 (1965).

    Article  Google Scholar 

  5. C. Sneden et al., “Evidence of multiple r-process sites in the early galaxy: New observations of CS 2289220521,” Astrophys. J. Lett. 533, L139–L142 (2000).

    Article  ADS  Google Scholar 

  6. L. Huedepohl et al., “Neutrino signal of electron-capture supernovae from core collapse to cooling,” Phys. Rev. Lett. 104, 251101 (2010).

    Article  ADS  Google Scholar 

  7. S. I. Blinnikov et al., “Exploding neutron stars in close binaries,” Sov. Astron. Lett. 10, 177–179 (1984).

    ADS  Google Scholar 

  8. F.-K. Thielemann et al., “Neutron star mergers and nucleosynthesis of heavy elements,” Annu. Rev. Nucl. Part. Sci. 67, 253–276 (2017).

    Article  ADS  Google Scholar 

  9. N. R. Tanvir et al., Astrophys. J. Lett. 848, L27 (2017).

    Article  ADS  Google Scholar 

  10. D. Watson, et al., “Identification of strontium in the merger of two neutron stars,” Nature 574, 497—506 (2019).

  11. J. Krumlinde and P. Möller, “Calculation of Gamow–Teller β-strength functions in the rubidium region in the RPA approximation with Nilsson-model wave functions,” Nucl. Phys. A 417, 419–446 (1984).

    Article  ADS  Google Scholar 

  12. V. G. Aleksankin, Yu. S. Lyutostanskii, and I. V. Panov, “Half-lives of nuclei far from the line of stability and the structure of the strength function of beta decay,” Sov. J. Nucl. Phys. 34, 804 (1981).

    Google Scholar 

  13. I. N. Borzov, S. A. Fayans, and E. L. Trykov, “Gamow–Teller strength functions of superfluid odd-a nuclei and neutrino capture reactions,” Nucl. Phys. A 584, 335–361 (1995).

    Article  ADS  Google Scholar 

  14. I. N. Borzov, “Beta-decay rates,” Nucl. Phys. A 777, 645–675 (2006).

    Article  ADS  Google Scholar 

  15. Yu. S. Lyutostansky, “Resonance structure of the charge-exchange strength function,” Yad. Fiz. 82, 440—448 (2019).

    Google Scholar 

  16. P. Möller, J. R. Nix, and K.-L. Kratz, “Nuclear properties for astrophysical and radioactive-ion beam applications,” At. Data Nucl. Data Tables 66, 131–343 (1997).

    Article  ADS  Google Scholar 

  17. K.-L. Kratz, K. Farouqi, and B. Pfeiffer, “Nuclear physics far from stability and r-process nucleosynthesis,” Prog. Part. Nucl. Phys. 59, 147–155 (2007).

    Article  ADS  Google Scholar 

  18. I. Panov, Yu. Lutostansky, and F.-K. Thielemann, “Beta-decay half-lives for the r-process nuclei,” Nucl. Phys. A 947, 1–11 (2016).

    Article  ADS  Google Scholar 

  19. A. A. Staudt et al., “Second-generation microscopic predictions of beta-decay half-lives of neutron-rich nuclei,” At. Data Nucl. Data Tables 44, 79–132 (1990).

    Article  ADS  Google Scholar 

  20. I. N. Borzov et al., “Ground state properties and β-decay half-lives near 132Sn in a self-consistent theory,” Z. Phys. 355, 117–127 (1996).

    ADS  Google Scholar 

  21. P. Möller, B. Pfeiffer, and K.-L. Kratz, “New calculations of gross b-decay properties for astrophysical applications: Speeding-up the classical r process,” Phys. Rev. C 67, 055802 (2003).

    Article  ADS  Google Scholar 

  22. T. Marketin et al., “Microscopic calculations of β-decay rates for r-process,” Acta Phys. Pol. B 46, 641—650 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Yu. Korneev and I. V. Panov, “The contribution of fission to heavy-element nucleosynthesis in the astrophysical r-process,” Astron. Lett. 37,864–873(2011).

    Article  ADS  Google Scholar 

  24. S. Rosswog et al., “Mass ejection in neutron star mergers,” Astron. Astrophys. 341, 499–526 (1999).

    ADS  Google Scholar 

  25. T. Rauscher and F.-K. Thielemann, “Astrophysical reaction rates from statistical model calculations,” At. Data Nucl. Data Tables 75, 1–351 (2000).

    Article  ADS  Google Scholar 

  26. P. Möller et al., “Nuclear ground-state masses and deformations,” At. Data Nucl. Data Tables 59, 185–381 (1995).

    Article  ADS  Google Scholar 

  27. Y. Aboussir et al., “Nuclear mass formula via an approximation to the Hartree–Fock method,” At. Data Nucl. Data Tables 61, 127–176 (1995).

    Article  ADS  Google Scholar 

  28. I. V. Panov et al., “Neutron-induced astrophysical reaction rates for translead nuclei,” Astron. Astrophys. 513, A61 (2010).

    Article  Google Scholar 

  29. I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, “r‑process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A@130,” Pis’ma Astron. Zh. 34, 213–221 (2008).

    ADS  Google Scholar 

  30. NuDat2 Database. 2009, http://www.nndc.bnl.gov/nudat2/.

  31. T. Marketin, L. Huther, and G. Martínez-Pinedo, “Large-scale evaluation of β-decay rates of r-process nuclei with the inclusion of first-forbidden transitions,” Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  32. S. Goriely and M. Arnould, “What can we learn from the r-element distribution of CS 22892-052?,” Astron. Astrophys. 322, L29–L32 (1997).

    ADS  Google Scholar 

  33. F. Käppeler, F.-K. Thielemann, and M. Wiescher, “Current quests in nuclear astrophysics and experimental approaches,” Annu. Rev. Nucl. Part. Sci. 48, 175–251 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to I.N. Borzov and Yu.S. Lyutostansky for fruitful discussions of microscopic models and to S.I. Blinnikov and A. V. Yudin for the discussion of possible scenarios of evolution of close binaries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Ethics declarations

The work was supported by the Russian Science Foundation, project no. 21-12-00061.

Additional information

Translated by M. Potapov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, I.V. Beta-Decay Rate as an Important Factor of Production of Heavy Nuclei in the r-Process. Phys. Part. Nuclei 54, 660–664 (2023). https://doi.org/10.1134/S1063779623040251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040251

Keywords:

Navigation