Skip to main content
Log in

Spectator Matter in Collisions of Relativistic Deformed Nuclei

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The Abrasion–Ablation Monte Carlo for Colliders (AAMCC) model is used to study the characteristics of spectator matter in central collisions of relativistic 238U nuclei, which are sensitive to the mutual orientation and the degree of deformation of the colliding nuclei. It is shown that the multiplicity of spectator neutrons and their forward-backward asymmetry substantially depend on the initial mutual orientation of 238U nuclei, which makes it possible to separate tip-body events with a high forward-backward asymmetry and a maximum multiplicity of spectator neutrons, as well as side-side events with a similar multiplicity, but with a minimal asymmetry. It is found that an increase in the quadrupole deformation parameter \({{\beta }_{2}}\) of 238U nuclei leads to a proportional increase in the multiplicity of spectator neutrons in tip-body events. Thus, the detection of spectator neutrons in collisions of relativistic deformed nuclei in an experiment can be used to study a degree of their deformation and to select collisions of a certain orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Padilla-Rodal, “On the measurement of quadrupole moments of radioactive nuclei,” J. Phys. Conf. Ser. 322, 012004 (2011).

    Article  Google Scholar 

  2. S. Raman, C. Nestor, and P. Tikkanen, “Transition probability from the ground to the first-excited 2+ state of even–even nuclides,” At. Data Nucl. Data Tables 78, 1–128 (2001). https://www.sciencedirect.com/science/article/pii/S0092640X01908587.

    Article  ADS  Google Scholar 

  3. B. S. Ishkhanov and V. N. Orlin, “Employing a spheroidal global potential to estimate the quadrupole deformation of nuclei,” Phys. At. Nucl. 68, 1352–1371 (2005). http://link.springer.com/10.1134/1.2011495

    Article  Google Scholar 

  4. J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, J. R. Stone, and M. R. Strayer, “Dipole giant resonances in deformed heavy nuclei,” Phys. Rev. C 71, 064328 (2005). https://link.aps.org/doi/10.1103/PhysRevC.71.064328

    Article  ADS  Google Scholar 

  5. V. Somà, “From the liquid drop model to lattice QCD,” Eur. Phys. J. Plus 133, 1–22 (2018).

    Article  ADS  Google Scholar 

  6. V. Varlamov, V. Chesnokov, and S. Komarov, “Centre for photonuclear experiments data: Chart of nuclear shape and size parameters,” http://cdfe.sinp.msu.ru/ services/radchart/radmain.html.

  7. P. Stránský, A. Frank, and R. Bijker, “On prolate shape predominance in nuclear deformation,” J. Phys.: Conf. Ser. 322, 012018 (2011). https://iopscience.iop.org/article/10.1088/1742-6596/322/1/012018.

    Google Scholar 

  8. P. Filip, “Elliptic flow in central collisions of deformed nuclei,” Phys. At. Nucl. 71, 1609–1618 (2008).

    Article  Google Scholar 

  9. M. R. Haque, Z. W. Lin, and B. Mohanty, “Multiplicity, average transverse momentum, and azimuthal anisotropy in U + U Collisions at √s NN = 200 GeV using a multiphase transport model,” Phys. Rev. C 85, 034905 (2012). https://link.aps.org/doi/10.1103/PhysRevC.85.034905

    Article  ADS  Google Scholar 

  10. L. Adamczyk et al. (STAR Collab.), “Azimuthal anisotropy in U + U and Au + Au collisions at RHIC,” Phys. Rev. Lett. 115, 222301 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.115.222301

    Article  ADS  Google Scholar 

  11. A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz, “Collision geometry and flow in uranium + uranium collisions,” Phys. Rev. C 92, 044903 (2015). https://link.aps.org/doi/10.1103/PhysRevC.92.044903

    Article  ADS  Google Scholar 

  12. G. Giacalone, “Elliptic flow fluctuations in central collisions of spherical and deformed nuclei,” Phys. Rev. C 99, 1–10 (2019).

    Article  Google Scholar 

  13. G. Giacalone, “Observing the deformation of nuclei with relativistic nuclear collisions,” Phys. Rev. Lett. 124, 202301 (2020). https://link.aps.org/doi/10.1103/PhysRevLett.124.202301

    Article  ADS  Google Scholar 

  14. V. Bairathi, M. R. Haque, and B. Mohanty, “Selecting specific initial configurations using spectator neutrons in U + U collisions,” Phys. Rev. C 91, 054903 (2015). https://link.aps.org/doi/10.1103/PhysRevC.91.054903

    Article  ADS  Google Scholar 

  15. S. Acharya, et al., “Anisotropic flow in Xe–Xe collisions at √s NN = 5.44 TeV,” Phys. Lett. B 784, 82–95 (2018). www.sciencedirect.com/science/article/pii/ S037026931830515X.

    Article  ADS  Google Scholar 

  16. S. Chatterjee and P. Tribedy, “Separation of flow from the chiral magnetic effect in U + U collisions using spectator asymmetry,” Phys. Rev. C 92, 011902(R) (2015).

  17. K. Fukushima, D. E. Kharzeev, and H. J. Warringa, “Chiral magnetic effect,” Phys. Rev. D 78, 074033 (2008). https://link.aps.org/doi/10.1103/PhysRevD.78.074033

    Article  ADS  Google Scholar 

  18. A. O. Svetlichnyi and I. A. Pshenichnov, “Formation of free and bound spectator nucleons in hadronic interactions between relativistic nuclei,” Bull. Russ. Acad. Sci.: Phys. 84, 911–916 (2020). https://doi.org/10.3103/S1062873820080110

    Article  Google Scholar 

  19. C. Loizides, J. Kamin, and D. D’Enterria, “Improved Monte Carlo Glauber predictions at present and future nuclear colliders,” Phys. Rev. C 97, 054910 (2018). https://doi.org/10.1103/PhysRevC.97.054910

    Article  ADS  Google Scholar 

  20. Q. Shou, Y. Ma, P. Sorensen, A. Tang, F. Videbæk, and H. Wang, “Parameterization of deformed nuclei for Glauber modeling in relativistic heavy ion collisions,” Phys. Lett. B 749, 215–220 (2015). www.sciencedirect.com/science/article/pii/S0370269315005985.

    Article  ADS  Google Scholar 

  21. T. Ericson, “The statistical model and nuclear level densities,” Adv. Phys. 9, 425–511 (1960). https://doi.org/10.1080/00018736000101239

    Article  ADS  Google Scholar 

  22. A. S. Botvina, I. N. Mishustin, M. Begemann-Blaich, J. Hubele, G. Imme, I. Iori, P. Kreutz, G. J. Kunde, W. D. Kunze, V. Lindenstruth, U. Lynen, A. Moroni, W. F. Müller, C. A. Ogilvie, J. Pochodzalla, G. Raciti, T. Rubehn, H. Sann, A. Schüttauf, W. Seidel, W. Trautmann, and A. Wörner, “Multifragmentation of spectators in relativistic heavy ion reactions,” Nucl. Phys. A 584, 737–756 (1995). https://doi.org/10.1016/0375-9474(94)00621-S

    Article  ADS  Google Scholar 

  23. R. C. Prim, “Shortest connection networks and some generalizations,” Bell Syst. Tech. J. 36, 1389–1401 (1957). https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

    Article  ADS  Google Scholar 

  24. J. N. De, S. K. Samaddar, X. Viñas, and M. Centelles, “Nuclear expansion with excitation,” Phys. Lett. B 638, 160–165 (2006). https://doi.org/10.1016/j.physletb.2006.05.046

    Article  ADS  Google Scholar 

  25. V. E. Viola, K. Kwiatkowski, J. B. Natowitz, and S. J. Yennello, “Breakup densities of hot nuclei,” Phys. Rev. Lett. 93, 132701 (2004). https://doi.org/10.1103/PhysRevLett.93.132701

    Article  ADS  Google Scholar 

  26. J. P. Bondorf, A. S. Botvina, A. S. Iljinov, I. N. Mishustin, and K. Sneppen, “Statistical multifragmentation of nuclei,” Phys. Rep. 257, 133–221 (1995). https://doi.org/10.1016/0370-1573(94)00097-M

    Article  ADS  Google Scholar 

  27. V. F. Weisskopf and D. H. Ewing, “On the yield of nuclear reactions with heavy elements,” Phys. Rev. 57, 472–485 (1940). https://doi.org/10.1103/PhysRev.57.472

    Article  ADS  Google Scholar 

  28. E. Fermi, “High energy nuclear events,” Prog. Theor. Phys. 5, 570–583 (1950). https://doi.org/10.1143/ptp/5.4.570

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Agostinelli et al. (Geant4 Collab.), “Geant4—a simulation toolkit,” Nucl. Inst. Methods Phys. Res., Sect. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

Download references

FUNDING

The study was supported by Russian Foundation for Basic Research, project no. 18-02-40035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kozyrev.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyrev, N., Svetlichnyi, A., Nepeivoda, R. et al. Spectator Matter in Collisions of Relativistic Deformed Nuclei. Phys. Part. Nuclei 54, 605–612 (2023). https://doi.org/10.1134/S1063779623040214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040214

Navigation