Skip to main content
Log in

Compact Precision Laser Inclinometer: Measurement of Signals and Noise

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The results of developing a compact version of the Precision Laser Inclinometer (CPLI) with the reduced overall dimensions of 20 × 20 × 20 cm and weight of 10 kg are presented. Experimental data on detected angular oscillations of the Earth’s surface at the JINR site are obtained. The achieved sensitivity is 6 × 10–11 rad/Hz1/2 in the frequency range 1.4 × 10–3–10 Hz. The CPLI can be used in modern physical experiments for seismic isolation of large-scale installations. Reduction of the impact of microseismic angular oscillations of the Earth’s surface on the sensitive elements of the VIRGO Interference Gravitational Antenna, the Large Hadron Collider, and NICA will increase the accuracy of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.

Similar content being viewed by others

REFERENCES

  1. T. Westphal, H. Hepach, J. Pfaff, and M. Aspelmeyer, “Measurement of gravitational coupling between millimetre-sized masses,” Nature 591, 225–228 (2021).

    Article  ADS  Google Scholar 

  2. N. S. Azaryan, J. A. Budagov, M. V. Lyablin, A. A. Pluzhnikov, G. Trubnikov, G. Shirkov, O. Bruning, B. Di Girolamo, J.-Ch. Gayde, D. Mergelkuhl, and L. Rossi, “Colliding beams focus displacement caused by seismic events,” Phys. Part. Nucl. Lett. 16, 377–396 (2019).

    Article  Google Scholar 

  3. L. Trozzo and F. Badaracco, “Seismic and Newtonian noise in the GW detectors,” Galaxies 10, 20 (2022).

    Article  ADS  Google Scholar 

  4. F. Matichard, B. Lantz, R. Mittleman, K. Mason, J. Kissel, B. Abbott, S. Biscans, J. McIver, R. Abbott, S. Abbott, et al., “Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance,” Classical Quantum Gravity 32, 185003 (2015).

    Article  ADS  Google Scholar 

  5. J. Budagov and M. Lyablin, “Device for measuring the angle of inclination,” RF Patent No. 2510488, (30 May 2012).

  6. B. Di Girolamo, J.-Ch. Gayde, D. Mergelkuhl, M. Schaumann, J. Wenninger, N. Azaryan, J. Budagov, V. Glagolev, M. Lyablin, G. Shirkov, and G. Trubnikov, “The monitoring of the effects of Earth surface inclination with the precision laser inclinometer for high luminosity colliders,” in Proceedings of Russian Particle Accelerator Conference RuPAC2016, St. Petersburg, Russia, 2016, pp. 210–212.

  7. N. Azaryan, J. Budagov, J.-Ch. Gayde, B. Di Girolamo, V. Glagolev, M. Lyablin, D. Mergelkuhl, and G. Shirkov, “The innovative method of high accuracy interferometric calibration of the precision laser inclinometer,” Phys. Part. Nucl. Lett. 14, 112—122 (2017).

    Article  Google Scholar 

  8. N. Azaryan, J. Budagov, M. Lyablin, A. Pluzhnikov, B. Di Girolamo, J.-Ch. Gayde, and D. Mergelkuhl, “The compensation of the noise due to angular oscillations of the laser beam in the precision laser inclinometer,” Phys. Part. Nucl. Lett. 14, 930–938 (2017).

    Article  Google Scholar 

  9. N. Azaryan, J. Budagov, V. Glagolev, M. Lyablin, A. Pluzhnikov, A. Seletsky, G. Trubnikova, B. Di Girolamo, J.-C. Gayde, and D. Mergelkuhl, “Professional precision laser inclinometer: The noises origin and signal processing,” Phys. Part. Nucl. Lett. 16, 264–276 (2019).

    Article  Google Scholar 

  10. N. Azaryan, J. Budagov, V. Glagolev, M. Lyablin, A. Pluzhnikov, A. Seletsky, G. Trubnikov, B. Di Girolamo, J.-C. Gayde, and D. Mergelkuhl, “The seismic angular noise of an industrial origin measured by the precision laser inclinometer in the LHC location area,” Phys. Part. Nucl. Lett. 16, 343–353 (2019).

    Article  Google Scholar 

  11. J. Budagov, B. Di Girolamo, and M. Lyablin, “The compact nanoradian precision laser inclinometer—an innovative instrument for the angular microseismic isolation of the interferometric gravitational antennas,” Phys. Part. Nucl. Lett. 17, 916–930 (2020).

    Article  Google Scholar 

  12. J. Budagov, B. Di Girolamo, and M. Lyablin, “The methods to improve the thermal tolerance of the compact precision laser inclinometer,” Phys. Part. Nucl. Lett. 17, 931–937 (2020).

    Article  Google Scholar 

  13. P. Melchior, Earth Tides (Pergamon Press, 1966; Mir, Moscow, 1968).

  14. E. I. Butikov, “Oceanic tides: A physical explanation and modeling,” Computer Tools in Education, No. 5, 12–34 (2017).

    Google Scholar 

  15. B. Le Mkhauty, An Introduction to Hydrodynamic and Water Waves (Pacific Oceanographic Laboratory, Miami, 1969).

    Google Scholar 

  16. P. V. Kovtunenko, “Propagation of perturbations in a thin layer of a fluid stratified by viscosity,” Bull. Novosibirsk State Univ. Ser.: Math., Mech., Informatics 12, 38–50 (2015).

    Google Scholar 

  17. P. A. Tipler, Physics (Worth Publishers, New York, 1980), Ch. 14

    Google Scholar 

  18. R. De Luca and O. Faella, “Communicating vessels: A non-linear dynamical system,” Rev. Bras. Ensino Fís. 39, e3309 (2017).

    Google Scholar 

  19. J. Budagov, B. Di Girolamo, and M. Lyablin, “The methods to improve the thermal tolerance of the compact precision laser inclinometer,” Phys. Part. Nucl. Lett. 17, 931–937 (2020).

    Article  Google Scholar 

  20. V. Batusov, J. Budagov, and M. Lyablin, “A laser sensor of a seismic slope of the earth surface,” Phys. Part. Nucl. Lett. 10, 43–47 (2013).

    Article  Google Scholar 

  21. V. Batusov, Y. Budagov, M. Lyablin, and A. Sissakyan, “On some new effect of laser ray propagation in atmospheric air,” Phys. Part. Nucl. Lett. 7, 359–363 (2010).

    Article  Google Scholar 

  22. V. Yu. Batusov, Yu. A. Budagov, M. V. Lyablin, and A. N. Sisakyan, “Device for forming a laser beam,” RF Patent No. 2510488 (30 May 2012).

  23. M. Lyablin, “Observation of the 2-D Earth surface angular deformations by the Moon and Sun by the precision laser inclinometer,” in Proceedings of the Challenge on Learned Image Compression (CLIC) Workshop (2017).

  24. W. Coosemans, H. Mainaud Durand, A. Marin, and J.‑P. Quesnel, “The alignment of the LHC low beta triplets: Review of instrumentation and methods,” in Proceedings of the 7th International Workshop on Accelerator Alignment, SPring-8, Japan, 2002.

  25. www.hamamatsu.com/eu/en/product/optical-sensors/ photodiodes/si-photodiode-array/segmented-type-si-photodiode/S5980.html.

  26. J. N. Brune and J. Oliver, “The seismic noise of the Earth’s surface,” Bull. Seism. Soc. Am. 49, 349–353 (1959).

    Google Scholar 

  27. D. E. McNamara and R. P. Buland, “Ambient noise levels in the continental United States,” Bull. Seism. Soc. Am. 94, 1517–1527 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lyablin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanov, N.V., Bednyakov, I.V., Budagov, Y.A. et al. Compact Precision Laser Inclinometer: Measurement of Signals and Noise. Phys. Part. Nuclei 54, 788–800 (2023). https://doi.org/10.1134/S1063779623040068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040068

Navigation