Skip to main content
Log in

Global Polarization of Ξ Hyperons in Au + Au Collisions from the STAR Experiment

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The hot and dense matter produced in non-central heavy-ion collisions possess a large initial orbital angular momentum. This initial orbital angular momentum leads to global polarization of final state hadrons, which could be measured via parity violating weak decays of hyperons. The STAR experiment observed non-zero \(\Lambda \) global polarization. A large amount of new data provide opportunities to measure multistrange hyperon polarization. It could be important input for hydrodynamic studies of the system. In this proceedings, we report results of \(\Xi \) hyperon global polarization (\({{P}_{{{{\Xi }^{ - }} + {{{\bar {\Xi }}}^{ + }}}}}\)) measurement for Au + Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 27, 54.4 and 200 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. A. Voloshin, A. M. Poskanzer, and R. Snellings, “Collective phenomena in non-central nuclear collisions,” arXiv:0809.2949 [nucl-ex].

  2. Z. T. Liang and X. N. Wang, “Globally polarized quark-gluon plasma in noncentral A + A collisions,” Phys. Rev. Lett. 94, 102301 (2005). https://link.aps.org/doi/10.1103/PhysRevLett.94.102301

    Article  ADS  Google Scholar 

  3. S. A. Voloshin, “Polarized secondary particles in unpolarized high energy hadron-hadron collisions,” arXiv: nucl-th/0410089.

  4. S. A. Voloshin and T. Niida, “Ultrarelativistic nuclear collisions: Direction of spectator flow,” Phys. Rev. C 94, 021901 (2016). https://link.aps.org/doi/10.1103/PhysRevC.94.021901 (2016)

  5. P. A. Zyla et al. (Particle Data Group Collab.), “Review of particle physics,” Prog. Theor. Exp. Phys. 2020, 083C01 (2020). https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf.

  6. B. I. Abelev, M. M. Aggarwal, Z. Ahammed, B. D. Anderson, D. Arkhipkin, G. S. Averichev, Y. Bai, J. Balewski, O. Barannikova, L. S. Barnby, et al., “Global polarization measurement in Au + Au collisions,” Phys. Rev. C 76, 024915 (2007). https://doi.org/10.1103/PhysRevC.76.024915

    Article  ADS  Google Scholar 

  7. Erratum: Phys. Rev. C 95, 039906 (2017).

  8. L. Adamczyk et al., “Global Lambda hyperon polarization in nuclear collisions,” Nature 548, 62—65 (2017). https://doi.org/10.1038/nature23004

    Article  ADS  Google Scholar 

  9. M. S. Abdallah et al. (STAR Collab.), “Global Λ-hyperon polarization in Au+Au collisions at \(\sqrt {{{s}_{{NN}}}} \) = 3 GeV,” arXiv:2108.00044.

  10. J. Adam et al. (STAR Collaboration Collab.), “Global polarization of Ξ and Ω hyperons in Au + Au Collisions at \(\sqrt {{{s}_{{NN}}}} \) = 200 GeV,” Phys. Rev. Lett. 126, 162301 (2021). https://link.aps.org/doi/10.1103/PhysRevLett.126.162301

    Article  ADS  Google Scholar 

  11. T. D. Lee and C. N. Yang, “General partial wave analysis of the decay of a hyperon of spin 1/2,” Phys. Rev. 108, 1645–1647 (1957). https://link.aps.org/doi/10.1103/PhysRev.108.1645

    Article  ADS  Google Scholar 

  12. M. Huang et al. (HyperCP Collab.), “New measurement of \({{\Xi }^{ - }} \to \Lambda {{\pi }^{ - }}\) decay parameters,” Phys. Rev. Lett. 93, 011802 (2004). https://link.aps.org/doi/10.1103/PhysRevLett.93.011802

    Article  ADS  Google Scholar 

  13. K. B. Luk, H. T. Diehl, J. Duryea, G. Guglielmo, K. Heller, P. M. Ho, C. James, K. Johns, M. J. Longo, R. Rameika, et al., “Search for direct CP violation in nonleptonic decays of charged Ξ and Λ hyperons,” Phys. Rev. Lett. 85, 4860–4863 (2000). https://doi.org/10.1103/PhysRevLett.85.4860

    Article  ADS  Google Scholar 

  14. M. Anerella et al., “The RHIC magnet system,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 280–315 (2003); “The relativistic heavy ion collider project: RHIC and its detectors,” http://www.sciencedirect.com/science/article/pii/S016890020201940X.

  15. M. Anderson, J. Berkovitz, W. Betts, R. Bossingham, F. Bieser, R. Brown, and M. Burks, “The STAR time projection chamber: A unique tool for studying high multiplicity events at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659–678 (2003). https://doi.org/10.1016/S0168-9002(02)01964-2

    Article  Google Scholar 

  16. W. Llope, “Multigap RPCs in the STAR experiment at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 661, S110–S113 (2012); Proceedings of the Tenth Workshop on Resistive Plate Chambers and Related Detectors (RPC 2010). www.sciencedirect.com/science/article/pii/S0168900210017006.

    Google Scholar 

  17. J. Adams, A. Ewigleben, S. Garrett, W. He, T. Huang, P. Jacobs, X. Ju, M. Lisa, M. Lomnitz, R. Pak, et al., “The STAR event plane detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 968, 163970 (2020). https://doi.org/10.1016/j.nima.2020.163970

    Article  Google Scholar 

  18. C. A. Whitten et al. (STAR Collab.), “The beam-beam counter: A local polarimeter at STAR,” AIP Conf. Proc. 980, 390–396 (2008).

    Article  ADS  Google Scholar 

  19. Y. F. Xu, J. H. Chen, Y. G. Ma, A. H. Tang, Z. B. Xu, and Y. H. Zhu, “Physics performance of the STAR zero-degree calorimeter at relativistic heavy ion collider,” Nucl. Sci. Tech. 27, 126 (2016).

    Article  Google Scholar 

  20. D. X. Wei, W. T. Deng, and X. G. Huang, “Thermal vorticity and spin polarization in heavy-ion collisions,” Phys. Rev. C 99, 014905 (2019). https://link.aps.org/doi/10.1103/PhysRevC.99.014905

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Alpatov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpatov, E. Global Polarization of Ξ Hyperons in Au + Au Collisions from the STAR Experiment. Phys. Part. Nuclei 54, 571–574 (2023). https://doi.org/10.1134/S1063779623040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040056

Navigation