Skip to main content
Log in

The Complete α8m Contributions to the 1s Lamb Shift in Hydrogen

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Precision studies of simple atoms, such as hydrogen, play an essential role in tests of bound-state QED and determining fundamental constants, such as the Rydberg constant and the proton charge radius. One of the QED predictions is for the Lamb shift of hydrogenic energy levels and, in particular, of the ground state. The value of the \(1s\) Lamb shift in hydrogen and deuterium is required for an accurate determination of the Rydberg constant and the proton charge radius utilizing data from high-resolution spectroscopy of hydrogen and deuterium atoms, as well as for precision tests of bound-state QED. The dominant QED contribution to the uncertainty is due to the \({{\alpha }^{8}}m\) external-field contributions. We discuss here our recent results on the two- and three-loop contributions, which essentially reduce the theoretical uncertainty. Combined with recent calculations of Laporta on the slope of the Dirac form factor in the three-loop level, our results allow for completion of calculations of \({{\alpha }^{8}}m\) contributions to the Lamb shift of the ground state in the hydrogen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011).

    Article  ADS  Google Scholar 

  2. A. Matveev et al., Phys. Rev. Lett. 110, 230801 (2013).

    Article  ADS  Google Scholar 

  3. A. Beyer et al., Science 358, 79 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Fleurbaey et al., Phys. Rev. Lett. 120, 183001 (2018).

    Article  ADS  Google Scholar 

  5. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C. Vutha, and E. A. Hessels, Science 365, 1007 (2019).

    Article  ADS  Google Scholar 

  6. A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hänsch, and T. Udem, Science 370, 1061 (2020).

    Article  ADS  Google Scholar 

  7. C. G. Parthey et al., Phys. Rev. Lett. 104, 233001 (2010).

    Article  ADS  Google Scholar 

  8. A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, M. Diepold, L. M. P. Fernandes, A. Giesen, A. L. Gouvea, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, C. Y. Kao, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, C. Schwob, D. Taqqu, J. F. C. A. Veloso, J. Vogelsang, and R. Pohl, Science 339, 417 (2013).

    Article  ADS  Google Scholar 

  9. R. Pohl, F. Nez, L. M. P. Fernandes, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, M. Diepold, A. Giesen, A. L. Gouvea, T. Graf, T. W. Hänsch, P. Indelicato, L. Julien, P. Knowles, F. Kottmann, E.-O. Le Bigot, Y.-W. Liu, J. A. M. Lopes, L. Ludhova, C. M. B. Monteiro, F. Mulhauser, T. Nebel, P. Rabinowitz, J. M. F. dos Santos, L. A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J. F. C. A. Veloso, and A. Antognini, Science 353, 669 (2016).

    Article  ADS  Google Scholar 

  10. W. Xiong, A. Gasparian, et al., Nature 575, 147 (2019).

    Article  ADS  Google Scholar 

  11. S. G. Karshenboim, Can. J. Phys. 77, 241 (1999).

    Article  ADS  Google Scholar 

  12. S. G. Karshenboim, Phys. Rev. A 91, 012515 (2015).

    Article  ADS  Google Scholar 

  13. B. de Beauvoir, C. Schwob, O. Acef, J.-J. Zondy, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 12, 61 (2000).

    Article  ADS  Google Scholar 

  14. B. de Beauvoir, C. Schwob, O. Acef, J. J. Zondy, L. Jozefowski, L. Hilico, F. Nez, L. Julien, A. Clairon, and F. Biraben, Eur. Phys. J. D 14, 398 (2001).

    Article  ADS  Google Scholar 

  15. P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).

    Article  ADS  Google Scholar 

  16. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

    Article  ADS  Google Scholar 

  17. S. G. Karshenboim, Phys. Rep. 422, 1 (2005).

    Article  ADS  Google Scholar 

  18. S. G. Karshenboim, Phys. Rev. Lett. 104, 220406 (2010).

    Article  ADS  Google Scholar 

  19. M. I. Eides, H. Grotch, and V. A. Shelyuto, Theory of Light Hydrogenic Bound States (Springer Berlin–Heidelberg–New York, 2007).

    MATH  Google Scholar 

  20. M. Herrmann et al., Phys. Rev. A 79, 052505 (2009).

    Article  ADS  Google Scholar 

  21. R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, Phys. Rev. Lett. 117, 173201 (2016).

    Article  ADS  Google Scholar 

  22. V. A. Yerokhin, K. Pachucki, and V. Patkóš, Ann. Phys. (Berlin, Ger.) 531, 1800324 (2019).

  23. S. G. Karshenboim, JETP 79, 230 (1994).

    ADS  Google Scholar 

  24. S. G. Karshenboim, Z. Phys. D 39, 109 (1997).

    Article  ADS  Google Scholar 

  25. S. G. Karshenboim, JETP 76, 541 (1993).

    ADS  Google Scholar 

  26. U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. Lett. 82, 53 (1999).

    Article  ADS  Google Scholar 

  27. U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. A 63, 042512 (2001).

    Article  ADS  Google Scholar 

  28. V. A. Yerokhin, Phys. Rev. A 80, 040501(R) (2009).

  29. V. A. Yerokhin, Eur. Phys. J. D 58, 57 (2010).

    Article  ADS  Google Scholar 

  30. V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A 77, 062510 (2008).

    Article  ADS  Google Scholar 

  31. V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A 71, 040101 (2005).

    Article  ADS  Google Scholar 

  32. V. A. Yerokhin, Phys. Rev. A 97, 052509 (2018).

    Article  ADS  Google Scholar 

  33. S. G. Karshenboim, Can. J. Phys. 76, 169 (1998).

    Article  ADS  Google Scholar 

  34. S. G. Karshenboim, Zh. Eksp. Teor. Fiz. 116, 1575 (1999).

    Google Scholar 

  35. S. G. Karshenboim, JETP 89, 850 (1999).

    Article  ADS  Google Scholar 

  36. E. Y. Korzinin, V. G. Ivanov, and S. G. Karshenboim, Eur. Phys. J. D 41, 1 (2007).

    Article  ADS  Google Scholar 

  37. S. Laporta, Phys. Lett. A 800, 135137 (2020).

    Article  MathSciNet  Google Scholar 

  38. S. Laporta, Phys. Lett. A 772, 232 (2017).

    Article  Google Scholar 

  39. P. A. Baikov, A. Maier, and P. Marquard, Nucl. Phys. A 877, 647.

  40. S. G. Karshenboim, A. Ozawa, V. A. Shelyuto, R. Szafron, and V. G. Ivanov, Phys. Lett. A 795, 432.

  41. R. Szafron, E. Y. Korzinin, V. A. Shelyuto, V. G. Ivanov, and S. G. Karshenboim, Phys. Rev. A 100, 032507 (2019).

    Article  ADS  Google Scholar 

  42. E. Y. Korzinin, V. A. Shelyuto, V. G. Ivanov, R. Szafron, and S. G. Karshenboim, Phys. Rev. A 98, 062519 (2018).

    Article  ADS  Google Scholar 

  43. A. Czarnecki and R. Szafron, Phys. Rev. A 94, 060501 (2016).

    Article  ADS  Google Scholar 

  44. S. G. Karshenboim, A. Ozawa, and V. G. Ivanov, Phys. Rev. A 100, 032515 (2019).

    Article  ADS  Google Scholar 

  45. S. G. Karshenboim and V. G. Ivanov, Phys. Rev. A 98, 022522 (2018).

    Article  ADS  Google Scholar 

  46. S. G. Karshenboim and V. A. Shelyuto, Phys. Rev. A 100, 032513 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  47. U. D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A 72, 062102 (2005).

    Article  ADS  Google Scholar 

  48. K. Pachucki, Phys. Rev. A 63, 042503 (2001).

    Article  ADS  Google Scholar 

  49. K. Pachucki, Ann. Phys. (N. Y.), 226, 1 (1993).

    Article  ADS  Google Scholar 

  50. M. I. Eides and V. A. Shelyuto, Phys. Rev. A 68, 042106 (2003).

    Article  ADS  Google Scholar 

  51. S. G. Karshenboim, V. G. Ivanov, and V. M. Shabaev, Phys. Scr. 80, 491 (1999).

    Article  Google Scholar 

  52. P. J. Mohr, At. Data Nucl. Data Tables 29, 453 (1983).

    Article  ADS  Google Scholar 

  53. K. Pachucki, Phys. Rev. Lett. 72, 3154 (1994).

    Article  ADS  Google Scholar 

  54. M. I. Eides and V. A. Shelyuto, Phys. Rev. A 52, 954 (1995).

    Article  ADS  Google Scholar 

  55. M. I. Eides and V. A. Shelyuto, JETP Letters 61, 478 (1995).

    ADS  Google Scholar 

  56. K. Pachucki, Phys. Rev. A 48, 2609 (1993).

    Article  ADS  Google Scholar 

  57. M. I. Eides, H. Grotch, and P. Pebler, Phys. Lett. A 326, 197 (1994).

    Article  Google Scholar 

  58. M. I. Eides, H. Grotch, and P. Pebler, Phys. Rev. A 50, 144 (1994).

    Article  ADS  Google Scholar 

  59. A. I. Milstein and M. Schumacher, Phys. Rep. 243, 183 (1994).

    Article  ADS  Google Scholar 

  60. S. G. Karshenboim and A. I. Milstein, Phys. Lett. B 549, 321 (2002).

    Article  ADS  Google Scholar 

  61. S. G. Karshenboim, E. Y. Korzinin, V. G. Ivanov, and V. A. Shelyuto, JETP Lett. 92, 8 (2010).

    Article  ADS  Google Scholar 

  62. S. G. Karshenboim, V. G. Ivanov, E. Y. Korzinin, and V. A. Shelyuto, Phys. Rev. A 81, 060501 (2010).

    Article  ADS  Google Scholar 

  63. K. Pachucki and U. D. Jentschura, Phys. Rev. Lett. 91, 113005 (2003).

    Article  ADS  Google Scholar 

  64. P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012).

    Article  ADS  Google Scholar 

  65. R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 84, 597 (1951).

    Article  ADS  Google Scholar 

  66. R. Karplus, A. Klein, and J. Schwinger, Phys. Rev. 86, 288 (1952).

    Article  ADS  Google Scholar 

  67. M. Baranger, Phys. Rev. 84, 866 (1951).

    Article  ADS  Google Scholar 

  68. M. Baranger, H. A. Bethe, and R. Feynman, Phys. Rev. 92, 482 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  69. S. G. Karshenboim, JETP 82, 403 (1996).

    ADS  Google Scholar 

  70. K. Melnikov and T. van Ritbergen, Phys. Rev. Lett. 84, 1673 (2000).

    Article  ADS  Google Scholar 

  71. P. Cvitanović and T. Kinoshita, Phys. Rev. D 10, 4007 (1974).

    Article  ADS  Google Scholar 

  72. S. Laporta and E. Remiddi, Phys. Lett. B 379, 283 (1996).

    Article  ADS  Google Scholar 

  73. P. A. Baikov and D. J. Broadhurst, in New Computing Technique in Physics Research IV, Ed. by B. Denby and D. Perret-Gallix (World Scientific, 1995).

    Google Scholar 

  74. M. I. Eides and H. Grotch, Phys. Rev. A 52, 3360 (1995).

    Article  ADS  Google Scholar 

  75. T. Kinoshita and W. B. Lindquist, Phys. Rev. D 42, 636 (1990).

    Article  ADS  Google Scholar 

  76. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 99, 110406 (2007).

    Article  ADS  Google Scholar 

  77. V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 93, 062514 (2016).

    Article  ADS  Google Scholar 

  78. V. A. Yerokhin and V. M. Shabaev, Phys. Rev. Lett. 115, 233002 (2015).

    Article  ADS  Google Scholar 

  79. K. Melnikov and A. Yelkhovsky, Phys. Lett. A 458, 143 (1999).

    Article  Google Scholar 

  80. K. Pachucki and S. G. Karshenboim, Phys. Rev. A 60, 2792 (1999).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. Czarnecki, M.I. Eides, K. Eikema, V.I. Korobov, J. Krauth, S. Laporta, D. Newell, K. Pachucki, Th. Udem, and V.A. Yerokhin for valuable stimulating discussions.

Funding

The work was supported in part by DFG (Grant no. KA 4645/1-2), ERC (under H2020 grant no. 742247), and RSF (under grant no. 17-12-01036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karshenboim.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karshenboim, S.G., Ozawa, A., Shelyuto, V.A. et al. The Complete α8m Contributions to the 1s Lamb Shift in Hydrogen. Phys. Part. Nuclei 53, 773–786 (2022). https://doi.org/10.1134/S1063779622040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622040074

Navigation