Skip to main content
Log in

Hawking Radiation from Relics of the QCD Phase Transition—Strange Quark Nuggets, Primordial Black Holes, and White Holes

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

It is entirely plausible that during the primordial quark–hadron phase transition, microseconds after the Big Bang, the universe may experience supercooling accompanied by mini inflation leading to a first-order phase transition from quarks to hadrons. The relics, in the form of quark nuggets, with baryon number beyond a critical value will survive the evolution of the universe. The quark nuggets are candidates of strange quark matter. It is conjectured that colour confinement turns the physical vacuum to an event horizon for quarks and gluons. The horizon can be crossed only by quantum tunnelling. The process just mentioned is the QCD counterpart of Hawking radiation from gravitational black holes. Tunnelling of neutrons from the nuggets is equivalent to Hawking radiation from the gravitational black hole. Thus, when the Hawking temperature of the quark nuggets gets turned off, tunnelling will stop and the nuggets will survive forever. The baryon number and the mass of these nuggets are derived using this theoretical format. The results agree well with the prediction using other phenomenological models. Further, the variation of Hawking temperature as a function of baryon number and mass of the nugget mimics chiral phase transition, somewhat similar to the QCD phase transition. Finally, the strange quark nuggets may well be the candidates of baryonic dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Boeckel and J. Schaffner-Bielich, Phys. Rev. Lett. 105, 041301 (2010).

    Article  ADS  Google Scholar 

  2. M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998).

    Article  ADS  Google Scholar 

  3. M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schaifer, Rev. Mod. Phys. 80, 1455 (2008).

    Article  ADS  Google Scholar 

  4. T. Boeckel and J. Schaffner-Bielich, Phys. Rev. D 85, 103506 (2012).

    Article  ADS  Google Scholar 

  5. N. Borgini, W. Cottingham, and R. V. Mau, J. Phys. G 26, 771 (2000).

    Article  ADS  Google Scholar 

  6. E. Witten (private communication).

  7. B. Sinha, Int. J. Mod. Phys. A 29, 1432004 (2014).

    Article  Google Scholar 

  8. E. Witten, Phys. Rev. D 30, 272 (1984).

    Article  ADS  Google Scholar 

  9. B. Sinha, J. Phys. Conf. Ser. 668, 012028 (2016).

    Article  Google Scholar 

  10. B. Sinha, Nucl. Phys. A 982, 235 (2019).

    Article  ADS  Google Scholar 

  11. P. Bhattacharya, Jan-e Alam, B. Sinha, and S. Raha, Phys. Rev. D 48, 4630 (1993).

    Article  ADS  Google Scholar 

  12. P. Castorina, D. Kharzeev, and H. Satz, Eur. Phys. J. C 52, 187 (2007).

    Article  ADS  Google Scholar 

  13. B. Sinha, Phys. Rev. D 101, 103007 (2020).

    Article  ADS  Google Scholar 

  14. A. H. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  15. K. Sumiyoshi, K. Kusaka, T. Kamio, and T. Kajino, Phys. Lett. B 225, 10 (1989).

    Article  ADS  Google Scholar 

  16. I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).

    Article  ADS  Google Scholar 

  17. S. Banerjee, A. Bhattacharyya, S. K. Ghosh, S. Raha, B. Sinha, and H. Toki, Mon. Not. R. Astron. Soc. 340, 284 (2003).

    Article  ADS  Google Scholar 

  18. A. Bhattacharyya, Jan-e Alam, S. Sarkar, P. Roy, B. Sinha, S. Raha, and P. Bhattacharjee, Phys. Rev. D 61, 083509 (2000).

    Article  ADS  Google Scholar 

  19. K. Sumiyoshi, T. Kajino, C. R. Alcock, and G. J. Mathews, Phys. Rev. D 42, 3963 (1990).

    Article  ADS  Google Scholar 

  20. C. Alcock, C. W. Akerlof, R. Allsman, T. Axelrod, D. Bennett, S. Chan, K. Cook, K. Freeman, K. Griest, S. Marshall, et al., Nature 365, 621 (1993).

    Article  ADS  Google Scholar 

  21. C. Alcock, R. Allsman, D. Alves, T. Axelrod, D. Bennett, K. Cook, K. Freeman, K. Griest, J. Guern, M. Lehner, et al., Astrophys. J. 479, 119 (1997).

    Article  ADS  Google Scholar 

  22. C. Alcock, R. Allsman, D. Alves, T. Axelrod, A. Becker, D. Bennett, K. Cook, K. Freeman, K. Griest, J. Guern, et al., Astrophys. J. 486, 697 (1997).

    Article  ADS  Google Scholar 

  23. C. Alcock, R. Allsman, D. R. Alves, T. Axelrod, A. C. Becker, D. Bennett, K. H. Cook, N. Dalal, A. J. Drake, K. Freeman, et al., Astrophys. J. 542, 281 (2000).

    Article  ADS  Google Scholar 

  24. K. Jedamzik, Phys. Rep. 307, 155 (1998).

    Article  ADS  Google Scholar 

  25. C. Alcock, R. Allsman, D. R. Alves, T. Axelrod, A. C. Becker, D. Bennett, K. H. Cook, N. Dalal, A. J. Drake, K. Freeman, et al., Astrophys. J. Lett. 550, L169 (2001).

    Article  ADS  Google Scholar 

  26. K. Jedamzik, Phys. Rev. D 55, R5871 (1997).

    Article  ADS  Google Scholar 

  27. L. Z. Fang and R. Ruffini, Basic Concepts in Relativistic Astrophysics (World Scientific, Singapore, 1983).

    Book  Google Scholar 

  28. Jan-e Alam, S. Raha, and B. Sinha, Astrophys. J. 513, 572 (1999).

    Article  ADS  Google Scholar 

  29. T. Nakamura, M. Sasaki, T. Tanaka, and Kip S. Thorne, Astro. J. 487, L139 (1997).

    Article  ADS  Google Scholar 

  30. S. Banerjee et al., J. Phys. G 26, L1 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author wishes to thank E. Witten for his perceptive comments on supercoling. He is grateful to Dima Kharzeev, Larry Mclarren, and Roger Penrose for their suggestion and comments Discussions with Pijush Bhattacharya, Debasis Mazumdar and Sibaji Raha are gratefully acknowledged. Finally the help rendered by Chiranjib Barman is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Sinha.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikash Sinha Hawking Radiation from Relics of the QCD Phase Transition—Strange Quark Nuggets, Primordial Black Holes, and White Holes. Phys. Part. Nuclei 53, 159–166 (2022). https://doi.org/10.1134/S1063779622020769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020769

Navigation