Skip to main content
Log in

Latest Results on (Anti-)Hypernuclei Production at the LHC with ALICE

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Heavy-ion collision experiments offer a unique opportunity to study the production of (anti-) hyperon bound systems, called (anti-)hypernuclei. ALICE at the LHC measured the production of (anti-)hypertritons analyzing data collected in Pb–Pb collisions at the two center-of-mass energies of \(\sqrt {{{s}_{{NN}}}} \) = 2.76 and 5.02 TeV. The analysis is performed by exploiting the excellent particle identification performance of the ALICE detector, in particular the energy loss of charged tracks in the Time Projection Chamber. In addition, the Inner Tracking System was used to separate the (anti-)hypertriton’s weak decay products from primary tracks through the precise determination of secondary vertices. Results on the (anti-)hypertriton lifetime measurement are discussed and compared to model predictions. The hypertriton yields are discussed and compared to the predictions of the statistical hadronization model. Plans for the future LHC Runs 3 and 4, scheduled to start in 2022, with improvements in statistics and spatial precision are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. M. Lattimer and M. Prakash, “The physics of neutron stars,” Science 304, 536–542 (2004); arXiv:astro-ph/0405262 [astro-ph].

    Article  ADS  Google Scholar 

  2. J. Schaffner-Bielich, “Hypernuclear physics for neutron stars,” Nucl. Phys. A 804, 309–321 (2008); arXiv: 0801.3791 [astro-ph].

    Article  ADS  Google Scholar 

  3. L. Tolos, M. Centelles, and A. Ramos, “The equation of state for the nucleonic and hyperonic core of neutron stars,” Publ. Astron. Soc. Aust. 34, e065 (2017).

    Article  ADS  Google Scholar 

  4. R. H. Dalitz and G. Rajasekharan, “The spins and lifetimes of the light hypernuclei,” Phys. Lett. 1, 58–60 (1962).

    Article  ADS  Google Scholar 

  5. H. Kamada, J. Golak, K. Miyagawa, H. Witała, and W. Gloeckle, “\(\pi \)-mesonic decay of the hypertriton,” Phys. Rev. C 57, 1595 (1998).

    Article  ADS  Google Scholar 

  6. B. I. Abelev et al. (STAR Collab.), “Observation of an antimatter hypernucleus,” Science 328, 58–62 (2010); arXiv:1003.2030 [nucl-ex].

    Article  ADS  Google Scholar 

  7. C. Rappold, E. Kim, D. Nakajima, T. Saito, O. Bertini, and S. Bianchin, “Hypernuclear spectroscopy of products from 6Li projectiles on a carbon target at 2 AGeV,” Nucl. Phys. A 913, 170–184 (2013); arXiv:1305.4871 [nucl-ex].

    Article  ADS  Google Scholar 

  8. J. Adam et al. (ALICE Collab.), “\(_{\Lambda }^{3}{\text{H}}\) and \(_{{\overline \Lambda }}^{3}\overline {\text{H}} \) production in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Lett. B 754, 360–372 (2016); arXiv:1506.08453 [nucl-ex].

  9. P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

  10. D. Davis, “50 years of hypernuclear physics: I. The early experiments,” Nucl. Phys. A 754, 3 (2005).

    Article  ADS  Google Scholar 

  11. L. Adamczyk et al. (STAR Collab.), “Measurement of the \(_{\Lambda }^{3}{\text{H}}\;\) lifetime in Au + Au collisions at the BNL relativistic heavy ion collider,” Phys. Rev. C 97, 054909 (2018).

    Article  ADS  Google Scholar 

  12. S. Acharya et al. (ALICE Collab.), “\(_{\Lambda }^{3}{\text{H}}\) and \(_{{\overline \Lambda }}^{3}\overline {\text{H}} \) lifetime measurement in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 5.02 TeV via two-body decay,” Phys. Lett. B 797, 134905 (2019).

    Article  Google Scholar 

  13. T. Chen and C. Guestrin, “A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (AMC Digital Laboratory, 2016), pp. 785–794.

  14. H. Mansour and K. Higgins, “The decay rate of hypertriton,” Nuovo Cimento A 51, 180 (1979).

    Article  ADS  Google Scholar 

  15. A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, “Decoding the phase structure of QCD via particle production at high energy,” Nature 561, 321–330 (2018); arXiv:1710.09425 [nucl-th].

  16. B. Abelev (ALICE Collab.), “Centrality dependence of \(\pi \), K, p production in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Rev. C 88, 044910 (2013).

    Article  ADS  Google Scholar 

  17. B. Abelev (ALICE Collab.), “K \(_{S}^{0}\) and \(\Lambda \) production in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Rev. Lett. 111, 222301 (2013).

    Article  ADS  Google Scholar 

  18. B. Abelev (ALICE Collab.), “Multi-strange baryon production at mid-rapidity in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Lett. B 728, 216–227 (2014).

    Article  ADS  Google Scholar 

  19. B. Abelev (ALICE Collab.), “\({{K}^{{*0}}}\)(892) and \(\phi \)(1020) production in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Rev. C 91, 024609 (2015).

    Article  ADS  Google Scholar 

  20. B. Abelev (ALICE Collab.), “\({{K}^{{*(892)0}}}\) [Key: use symbols from Ref. [19] ] and \(\phi \)(1020) production in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV,” Phys. Rev. C 91, 024609 (2015).

    Article  ADS  Google Scholar 

  21. J. Adam (ALICE Collab.), “Production of light nuclei and anti-nuclei in pp and Pb–Pb collisions at energies available at the CERN Large Hadron Collider,” Phys. Rev. C 93, 024917 (2016).

    Article  ADS  Google Scholar 

  22. S. Acharya (ALICE Collab.), “Production of \(^{4}\)He and \(^{4}\overline {{\text{He}}} \) in Pb–Pb collisions at \(\sqrt {{{s}_{{NN}}}} \) = 2.76 TeV at the LHC,” Nucl. Phys. A 971, 1–20 (2018).

    Article  ADS  Google Scholar 

  23. Z. Citron et al., Preprint CERN-LPCC-2018-07 (CERN, Geneve, 2018); arXiv:1812.06772 [hep-ph].

  24. B. Abelev et al. (ALICE Collab.), “Technical design report for the upgrade of the ALICE inner tracking system,” J. Phys. G 41, 087002 (2014).

    Article  ADS  Google Scholar 

  25. H. Garcilazo, A. Valcarce, and T. Fernandez-Carames, “\(\Lambda NN\) and \(\Sigma NN\) systems at threshold. II. The effect of waves,” Phys. Rev. C 76, 034001 (2007).

    Article  ADS  Google Scholar 

  26. T. Nagae et al., “Observation of a \(_{\Sigma }^{4}\)He bound state in the 4He(K , π) reaction at 600 MeV/\(c\),” Phys. Rev. Lett. 80, 1605–1609 (1998).

    Article  ADS  Google Scholar 

  27. A. Borissov (ALICE Collab.), “Hyperon production in pp collisions at \(\sqrt s \) = 7 TeV at the LHC with ALICE,” EPJ Web Conf. 97, 00005 (2015).

  28. B. B. Abelev et al. (ALICE Collab.), “Performance of the ALICE experiment at the CERN LHC,” Int. J. Mod. Phys. A 29, 1430044 (2014); arXiv:1402.4476 [nucl-ex].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Borissov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borissov, A. Latest Results on (Anti-)Hypernuclei Production at the LHC with ALICE. Phys. Part. Nuclei 53, 177–183 (2022). https://doi.org/10.1134/S1063779622020228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020228

Navigation