Skip to main content
Log in

STAR Recent Results on Heavy Ion Collisions

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Exploration of the hot and dense nuclear matter produced in collisions of heavy ions is one of the main goals of modern high energy nuclear physics. The Relativistic Heavy Ion Collider (RHIC) provides a unique opportunity to map the QCD phase diagram by colliding different nucleus species and varying the energy of collisions. RHIC has already begun the second phase of the Beam Energy Scan (BES) program, which will allow us to cover energy range for gold-gold collisions \(\sqrt {{{s}_{{NN}}}} = 7.7{\kern 1pt} - {\kern 1pt} 27\) GeV. The Fixed-target Program (FXT) will extend collision energy range available for the analysis down to \(\sqrt {{{s}_{{NN}}}} = 3.0\) GeV. BES-II along with FXT will dramatically enhance our understanding of the QCD phase diagram in the broad range of baryon chemical potential, \({{\mu }_{{\text{B}}}}\), up to 720 MeV. Recent detector upgrades increase STAR’s acceptance both in rapidity and low transverse momentum, and extend its particle identification capabilities. With new detectors STAR can explore phase diagram with even higher precision hopefully reaching both the onset of deconfinement as well as the critical point. In this talk, we present the most recent results and future plans from the STAR experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Adam et al. (STAR Collab.), Phys. Rev. C 102, 34909 (2020)

    Article  ADS  Google Scholar 

  2. C. Alt et al. (NA49 Collab.), Phys. Rev. Lett. 94, 192301 (2005).

    Article  ADS  Google Scholar 

  3. C. Alt et al. (NA49 Collab.), Phys. Rev. C 77, 024903 (2008).

    Article  ADS  Google Scholar 

  4. J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 (1982).

    Article  ADS  Google Scholar 

  5. F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, and K. Redlich, Phys. Rev. C 64, 024901 (2001)

    Article  ADS  Google Scholar 

  6. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006).

    Article  ADS  Google Scholar 

  7. L. Adamczyk et al. (STAR Collab.), Phys. Rev. C 96, 044904 (2017).

    Article  ADS  Google Scholar 

  8. M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Phys. Rev. D 60, 114028 (1999).

    Article  ADS  Google Scholar 

  9. R. V. Gavai and S. Gupta, Phys. Lett. 696, 459 (2011).

    Article  Google Scholar 

  10. J. Adam et al. (STAR Collab.), Phys. Lett. B. 785, 551 (2018).

    Article  ADS  Google Scholar 

  11. J. Adam et al. (STAR Collab.), arXiv:2001.02852v2.

  12. J. Adam et al. (STAR Collab.), Phys. Rev. C 102, 24903 (2020).

    Article  Google Scholar 

  13. G. Contin, L. Greiner, J. Schambach, M. Szelezniak, E. Anderssen, et al., Phys. Res. A 907, 60—80 (2018).

    Google Scholar 

  14. W. J. Llope et al. (STAR Collab.), Nucl. Inst. Methods Phys. Res., Sect. A 661, 110—113 (2012).

    Google Scholar 

  15. M. Juric, G. Bohm, J. Klabuhn, U. Krecker, F. Wysotzki, et al. Nucl. Phys. B 52, 1—30 (1973).

    Article  ADS  Google Scholar 

  16. J. Haidenbauer, U.-G. Mei\(\beta \)ner, and A. Nogga, arXiv: 1906.11681.

  17. J. Adam et al. (STAR Collab.), Nature Phys. 16, 409 (2020).

    Article  Google Scholar 

  18. J. Adam et al. (ALICE Collaboration), Nature Phys. 11, 811 (2015).

    Article  ADS  Google Scholar 

  19. L. Adamczyk et al. (STAR Collab.), arXiv:1810.10159 [nucl-ex].

  20. L. Adamczyk et al. (STAR Collab.), Phys. Rev. C 92, 024912 (2015).

    Article  ADS  Google Scholar 

  21. L. Adamczyk et al. (STAR Collab.), Phys. Lett. B 750, 64 (2015).

    Article  ADS  Google Scholar 

  22. R. Rapp, J. Wambach, and H. van Hees, in Relativistic Heavy Ion Physics, Ed. by R. Stock (Springer, 2010), Vol. 23, Chap. 4, pp. 1–42.

    Google Scholar 

  23. J. Adam et al. (STAR Collab.), arXiv:2006.00582 [nucl-ex].

  24. B. Abelev et al. (ALICE Collab.), J. High Energy Phys. 03, 013 (2014); arXiv:1311.0633 [nucl-ex].

  25. J. Adam et al. (STAR Collab.), Phys. Rev. Lett. 91, 172302 (2003); arXiv:0305015 [nucl-ex].

  26. G. Aad et al. (ATLAS Collab.), J. High Energy Phys. 09, 050 (2015); arXiv:1504.04337 [hep-ex].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aparin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparin, A. STAR Recent Results on Heavy Ion Collisions. Phys. Part. Nuclei 53, 127–134 (2022). https://doi.org/10.1134/S1063779622020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020125

Navigation