Skip to main content
Log in

Low and High Energy Constraints in AdS/QCD Models

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The AdS/QCD models are believed to interpolate between low and high energy sectors of QCD. This belief is usually based on observations that many phenomenologically reasonable predictions follow from bounds imposed at high energies. We consider an AdS/QCD model describing the Regge-like linear spectrum of spin-1 mesons in a general form and show that under definite physical assumptions, the low-energy constraints on 2-point correlation functions lead to nearly the same numerical values for the parameters of linear radial spectrum as the high energy ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Phys. Rept. 584, 1 (2015).

    Article  ADS  Google Scholar 

  2. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).

    Article  ADS  Google Scholar 

  3. E. Witten, Nucl. Phys. B 160, 57 (1979).

    Article  ADS  Google Scholar 

  4. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006).

    Article  ADS  Google Scholar 

  5. O. Andreev, Phys. Rev. D 73, 107901 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. S. Afonin, Phys. Lett. B 719, 399 (2013).

    Article  ADS  Google Scholar 

  7. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005).

    Article  ADS  Google Scholar 

  8. L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005).

    Article  ADS  Google Scholar 

  9. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  10. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. S. Afonin, Int. J. Mod. Phys. A 26, 3615 (2011).

    Article  ADS  Google Scholar 

  12. M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Nucl. Phys. B 147, 385–447, (1979);

    Article  ADS  Google Scholar 

  13. Nucl. Phys. B 147, 448–518 (1979).

  14. A. V. Anisovich, V. V. Anisovich, and A. V. Sarantsev, Phys. Rev. D 62, 051502(R) (2000);

  15. D. V. Bugg, Phys. Rept. 397, 257 (2004);

    Article  ADS  Google Scholar 

  16. E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007);

    Article  ADS  Google Scholar 

  17. D. M. Li, B. Ma, Y. X. Li, Q. K. Yao, and H. Yu, Eur. Phys. J. C 37, 323 (2004);

    Article  ADS  Google Scholar 

  18. S. S. Afonin, Phys. Lett. B 639, 258 (2006);

    Article  ADS  Google Scholar 

  19. S. S. Afonin, Eur. Phys. J. A 29, 327 (2006);

    Article  ADS  Google Scholar 

  20. S. S. Afonin, Phys. Rev. C 76, 015202 (2007);

    Article  ADS  Google Scholar 

  21. S. S. Afonin, Int. J. Mod. Phys. A 22, 4537 (2007);

    Article  ADS  Google Scholar 

  22. S. S. Afonin, Int. J. Mod. Phys. A 23, 4205 (2008);

    Article  ADS  Google Scholar 

  23. S. S. Afonin, Mod. Phys. Lett. A 22, 1359 (2007);

    Article  ADS  Google Scholar 

  24. S. S. Afonin, Mod. Phys. Lett. A 23, 4205 (2008);

    Article  Google Scholar 

  25. S. S. Afonin, Mod. Phys. Lett. A 23, 3159 (2008);

    Article  ADS  Google Scholar 

  26. M. Shifman and A. Vainshtein, Phys. Rev. D 77, 034002 (2008);

    Article  ADS  Google Scholar 

  27. P. Masjuan, E. Ruiz Arriola, and W. Broniowski, Phys. Rev. D 85, 094006 (2012);

    Article  ADS  Google Scholar 

  28. S. S. Afonin and I. V. Pusenkov, Phys. Rev. D 90, 094020 (2014);

    Article  ADS  Google Scholar 

  29. S. S. Afonin and I. V. Pusenkov, Mod. Phys. Lett. A 29, 1450193 (2014).

    Article  ADS  Google Scholar 

  30. S. S. Afonin, Phys. Lett. B 576, 122 (2003);

    Article  ADS  Google Scholar 

  31. S. S. Afonin and D. Espriu, J. High Energy Phys. 0609, 047 (2006).

  32. J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).

    Article  ADS  Google Scholar 

  33. G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B 321, 311 (1989).

    Article  ADS  Google Scholar 

  34. T. Das, V.S. Mathur, and S. Okubo, Phys. Rev. Lett. 19, 859 (1967).

    Article  ADS  Google Scholar 

  35. A. Pich, arXiv:1804.05664 [hep-ph].

  36. M. Davier, A. Hocker, L. Girlanda, and J. Stern, Phys. Rev. D 58, 096014 (1998).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the grant no. 19-32-90053 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Solomko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.S., Solomko, T.D. Low and High Energy Constraints in AdS/QCD Models. Phys. Part. Nuclei 53, 387–392 (2022). https://doi.org/10.1134/S1063779622020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020046

Navigation