Skip to main content
Log in

Bottom-Up Holographic Approach to Meson Spectroscopy

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The holographic methods inspired by the gauge/gravity correspondence from string theory have been actively applied to the hadron spectroscopy in the last fifteen years. Within the phenomenological bottom-up approach, the linear Regge-like trajectories for light mesons are naturally reproduced in the so-called “soft-wall” holographic models. We will give a short review of the underlying ideas and technical aspects related to the meson spectroscopy and present a generalized variant of soft-wall model that is convenient for description of real experimental data in meson spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  2. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).

    Article  Google Scholar 

  3. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998);

    Article  ADS  MathSciNet  Google Scholar 

  4. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005).

    Article  ADS  Google Scholar 

  8. L. Da Rold and A. Pomarol, Nucl. Phys. B 721, 79 (2005).

    Article  ADS  Google Scholar 

  9. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006).

    Article  ADS  Google Scholar 

  10. J. Erlich, G. D. Kribs, and I. Low, Phys. Rev. D 73, 096001 (2006);

    Article  ADS  Google Scholar 

  11. H. Boschi-Filho, N. R. F. Braga, and H. L. Carrion, Phys. Rev. D 73, 047901 (2006);

    Article  ADS  Google Scholar 

  12. J. Hirn, N. Rius, and V. Sanz, Phys. Rev. D 73, 085005 (2006);

    Article  ADS  Google Scholar 

  13. K. Ghoroku, N. Maru, M. Tachibana, and M. Yahiro, Phys. Lett. B 633, 602 (2006);

    Article  ADS  Google Scholar 

  14. C. Csáki and M. Reece, J. High Energy Phys. 0705, 062 (2007);

  15. J. P. Shock, F. Wu, Y.-L. Wu, and Z.-F. Xie, J. High Energy Phys. 0703, 064 (2007);

  16. B. Batell and T. Gherghetta, Phys. Rev. D 78, 026002 (2008);

    Article  ADS  Google Scholar 

  17. A. Krikun, Phys. Rev. D 77, 126014 (2008);

    Article  ADS  Google Scholar 

  18. W. de Paula, T. Frederico, H. Forkel, and M. Beyer, Phys. Rev. D 79, 075019 (2009);

    Article  ADS  Google Scholar 

  19. A. Vega and I. Schmidt, Phys. Rev. D 79, 055003 (2009);

    Article  ADS  Google Scholar 

  20. T. Gherghetta, J. I. Kapusta, and T. M. Kelley, Phys. Rev. D 79, 076003 (2009);

    Article  ADS  Google Scholar 

  21. S. S. Afonin, Phys. Lett. B 675, 54 (2009);

    Article  ADS  Google Scholar 

  22. S. S. Afonin, Phys. Lett. B 678, 477 (2009);

    Article  ADS  Google Scholar 

  23. S. S. Afonin, Eur. Phys. J. C 71, 1830 (2011);

    Article  ADS  Google Scholar 

  24. S. S. Afonin, Teor. Mat. Fiz. 184, 418 (2015);

    Article  MathSciNet  Google Scholar 

  25. S. S. Afonin, Mod. Phys. Lett. A 32, 1750155 (2017);

    Article  ADS  Google Scholar 

  26. G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009);

    Article  ADS  Google Scholar 

  27. A. Cherman, T. D. Cohen, and E. S. Werbos, Phys. Rev. C 79, 045203 (2009);

    Article  ADS  Google Scholar 

  28. D. Becciolini, M. Redi, and A. Wulzer, J. High Energy Phys. 1001 (2010) 074; S. Afonin, A. Andrianov, and D. Espriu, Phys. Lett. B 745, 52 (2015);

    Google Scholar 

  29. S. Afonin and I. Pusenkov, Phys. Lett. B 726, 283 (2013);

    Article  ADS  Google Scholar 

  30. S. Afonin and A. Katanaeva, Eur. Phys. J. C 74, 3124 (2014);

    Article  Google Scholar 

  31. S. Afonin and A. Katanaeva, Phys. Rev. D 98, 114027 (2018);

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega, Phys. Rev. D 87, 056001 (2013);

    Article  ADS  Google Scholar 

  33. T. Gutsche, V. E. Lyubovitskij, and I. Schmidt, Nucl. Phys. B 952, 114934 (2020);

    Article  Google Scholar 

  34. S. S. Afonin, Eur. Phys. J. C 80, 723 (2020).

    Article  ADS  Google Scholar 

  35. O. Andreev, Phys. Rev. D 73, 107901 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Forkel, Phys. Rev. D 78, 025001 (2008);

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, and S. Nicotri, Phys. Rev. D 78, 055009 (2008);

    Article  ADS  Google Scholar 

  38. F. Jugeau, S. Narison, and H. Ratsimbarison, Phys. Lett. B 722, 111 (2013).

    Article  ADS  Google Scholar 

  39. S. S. Afonin, Int. J. Mod. Phys. A 26, 3615 (2011).

    Article  ADS  Google Scholar 

  40. S. S. Afonin, Int. J. Mod. Phys. A 27, 1250171 (2012).

    Article  ADS  Google Scholar 

  41. S. S. Afonin, Phys. Lett. B 719, 399 (2013).

    Article  ADS  Google Scholar 

  42. H. Forkel, M. Beyer, and T. Frederico, J. High Energy Phys. 0707, 077 (2007);

  43. S. S. Afonin, Eur. Phys. J. C 80, 723 (2020).

    Article  ADS  Google Scholar 

  44. S. S. Afonin, Int. J. Mod. Phys. A 25, 5683 (2010);

    Article  ADS  Google Scholar 

  45. Adv. High Energy Phys. 2017, 8358473 (2017).

  46. A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, J. High Energy Phys. 1104, 066 (2011).

  47. F. Zuo, Phys. Rev. D 82, 086011 (2010);

    Article  ADS  Google Scholar 

  48. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega, Phys. Rev. D 85, 076003 (2012).

    Article  ADS  Google Scholar 

  49. A. V. Anisovich, V. V. Anisovich, and A. V. Sarantsev, Phys. Rev. D 62, 051502(R) (2000).

  50. D. V. Bugg, Phys. Rept. 397, 257 (2004).

    Article  ADS  Google Scholar 

  51. E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007).

    Article  ADS  Google Scholar 

  52. S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Phys. Rept. 584, 1 (2015).

    Article  ADS  Google Scholar 

  53. T. Gherghetta, J. I. Kapusta, and T. M. Kelley, Phys. Rev. D 79, 076003 (2009).

    Article  ADS  Google Scholar 

  54. T. Gutsche, V. E. Lyubovitskij, I. Schmidt, and A. Vega, Phys. Rev. D 85, 076003 (2012).

    Article  ADS  Google Scholar 

  55. N. Evans and A. Tedder, Phys. Lett. B 642, 546 (2006);

    Article  ADS  Google Scholar 

  56. S. S. Afonin, Phys. Rev. C 83, 048202 (2011).

    Article  ADS  Google Scholar 

  57. M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Nucl. Phys. B 147, 385–447, (1979);

    Article  ADS  Google Scholar 

  58. Nucl. Phys. B 147, 448–518 (1979).

  59. S. S. Afonin, Int. J. Mod. Phys. A 26, 3615 (2011).

    Article  ADS  Google Scholar 

  60. I. R. Klebanov and E. Witten, Nucl. Phys. B 556, 89 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

This research was funded by the Russian Science Foundation grant no. 21-12-00020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Afonin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, S.S. Bottom-Up Holographic Approach to Meson Spectroscopy. Phys. Part. Nuclei 53, 96–101 (2022). https://doi.org/10.1134/S1063779622020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020034

Navigation