Skip to main content
Log in

Luminosity of an Ion Collider

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A formula is obtained for the luminosity of a collider at the collision of two beams that differ, generally speaking, by their parameters (asymmetric colliders). The formula is valid for counterpropagating and merging beams with coincident longitudinal axes. Three special cases of the formula are considered: collision of two identical axially symmetric bunched beams, collision of a bunch with a coasting beam, and collision of two coasting beams. Collision of intersecting beams is briefly considered, and the method for the luminosity calculation is formulated. The synchronization problem is considered for collisions of asymmetric beams. A method is presented for optimizing parameters of a cyclic collider by minimizing betatron frequency shifts caused by the effect of the space charge of the beams. Numerical examples of luminosity calculations for several types of asymmetric colliders are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The first formula for estimation of the luminosity was proposed by D. Kerst in his 1956 report (D.W. Kerst, Properties of an Intersecting-Beam Accelerating System, Proc. Int. Conf. on High Energy Accel., Geneva, 1956, p. 37): the number of events per unit time for processes with the cross section А in collisions of two bunches with the number of particles N1 and N2 and length l at the particle velocity v is n = 2N1N2vlA.

  2. The technique was named by analogy between the motion of a bunch between crab cavities and the motion of a crab, which is known to move sideways (“physicists joking”).

  3. This formula is valid for electrons (positrons) at А = 1 with replacement of rp by re, the classical electron radius.

REFERENCES

  1. N. N. Agapov, V. D. Kekelidze, A. D. Kovalenko, R. Lednitski, V. A. Matveev, I. N. Meshkov, V. A. Nikitin, Yu. K. Potrebennikov, A. S. Sorin, and G. V. Trubnikov, “Relativistic nuclear physics at JINR: From the synchrophasotron to the NICA collider,” Phys. Usp. 59, 383–402 (2016).

    Article  ADS  Google Scholar 

  2. R. Carrigan, V. Lebedev, N. Mokhov, S. Nagaitsev, G. Stancari, D. Still, and A. Valishev, “Emittance growth and beam loss,” in Accelerator Physics at the Tevatron Collider, Ed. by V. Lebedev and V. Shiltsev (Springer, New York, 2014), p. 254.

    Google Scholar 

  3. A. W. Chao, K. N. Mess, M. Tigner, and F. Zimmermann, Handbook of Accelerator Physics and Engineering, 2nd ed. (World Scientific Singapore, 2013).

    Book  Google Scholar 

  4. M. J. Syphers and F. Zimmermann, “Accelerator physics of colliders,” in K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014); http://pdg.lbl.gov/2015/reviews/rpp2015-rev-accel-phys- colliders.pdf (2015 update).

  5. J. Gareyte, “Quality limitations of hadron beams,” in Proceedings of the High Quality Beams: Joint US-CERN-JAPAN-RUSSIA Accelerator School, St. Petersburg and Moscow, Russia, 1–14 July 2000, AIP Conf. Proc. 592, 24 (2001).

  6. Y. Batygin and T. Katayama, RIKEN-AF-AC-10 (RIKEN, Tokyo, 1998).

  7. I. N. Meshkov, “Luminosity of a collider with asymmetric beams,” Phys. Part. Nucl. Lett. 15, 506–509 (2018); http://arXiv.org/abs/1802.08447v2.

    Article  Google Scholar 

  8. I. N. Meshkov, “Optimum luminosity of proton-ion collider,” in Proceedings of the 26th Russian Particle Accelerator Conference (RuPAC2018), Protvino, Russia, October 1–5,2018, Ed. by M. Kuzin and V. Schaa. https://doi.org/10.18429/JACoW-RUPAC2018-TUCMNO1

  9. I. N. Meshkov, “Electron–ion collider with quasi-ordered beam,” Nucl. Instrum. Methods Phys. Res., Sect. A 917, 5660 (2019); http://arXiv.org/abs/1806.08983.

  10. J. Jowett, Private communication.

  11. S. Jamaguchi, Private communication.

  12. R. B. Palmer, “Energy scaling, crab crossing and the pair problem,” SLAC-Pub-4707 (Stanford Lin. Accel. Center, 1988).

    Google Scholar 

  13. P. Raimondi, D. Shatilov, and M. Zobov, “Beam-beam issues for colliding schemes with large Piwinski angle and crabbed waist,” Preprint LNF-07/003 (IR) (INFN-Laboratori Nazionali di Frascati, 2007).

    Google Scholar 

  14. P. Raimondi, D. Shatilov, and M. Zobov, “Beam-beam simulations for particle factories with crabbed waist,” in Proceedings of the 22nd Particle Accelerator Conference (PAC07), Albuquerque, USA, June 25–29,2007. http://pac07.org/proceedings/PAPERS/TUPAN033.PDF.

  15. P. Raimondi, D. Shatilov, and M. Zobov, “Suppression of beam-beam resonances in crab waist collisions,” in Proceedings of the 11th European Particle Accelerator Conference (EPAC08), Genoa, Italy, June 23–27,2008. http://accelconf.web.cern.ch/AccelConf/e08/papers/wepp045.pdf.

  16. M. Zobov, “New generation electron-positron factories,” Phys. Part. Nucl. 42, 782–799 (2011).

    Article  Google Scholar 

  17. A. N. Antonov, M. K. Gaidarov, M. V. Ivanov, and D. N. Kadrev, “The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)—a conceptual design study,” Nucl. Instrum. Methods Phys. Res., Sect. A. 637, 60–76 (2011);

    Google Scholar 

  18. I. A. Koop (BINP–GSI Collab.), “Conceptual design on an electron–nucleus scattering facility at GSI,” in Proceedings of the 8th European Particle Accelerator Conference (EPAC02), Paris, France, 3–7 June2002. http://accelconf.web.cern.ch/AccelConf/e02/PAPERS/ THPLE075.pdf.

  19. I. N. Meshkov, Transport of charged particle beams (Nauka, Novosibirsk, 1991) [in Russian].

    Google Scholar 

  20. S. Machida, “Tune shift and tune spread,” in Proceedings of the High Quality Beams: Joint US-CERN-JAPAN-RUSSIA Accelerator School, St. Petersburg and Moscow, Russia, 1-14 July 2000, AIP Conf. Proc., 592, 408 (2001).

  21. L. J. Laslett, in Proceedings of the 1963 Summer Study on Storage Rings, Accelerators and Experimentation at Super-High Energies”, Ed. by J. W. Bittner, BNL 7534 (Brookhaven National Lab., Upton, New York, 1963), pp. 324–367.

  22. J. T. Seeman, “Beam-beam parameter and tune shift,” in Proceedings of the High Quality Beams: Joint US–CERN–JAPAN–RUSSIA Accelerator School, St. Petersburg and Moscow, Russia, 1–14 July 2000, AIP Conf. Proc., 592, 165 (2001).

  23. I. Meshkov, A. Sidorin, A. Smirnov, E. Syresin, and T. Katayama, “Ordered state of ion beams,” Preprint RIKEN-AF-AC-34 (RIKEN, Tokyo, 2002).

    Google Scholar 

  24. I. Meshkov, D. Mohl, T. Katayama, A. Sidorin, A. Smirnov, E. Syresin, G. Trubnikov, and H. Tsutsui, “Numerical simulation of crystalline beam in storage ring,” Nucl. Instrum. Methods Phys., Res., Sect. A 532, 376–381 (2004).

    Google Scholar 

  25. M. Steck, K. Beckert, P. Beller, B. Franzke, and F. Nolden, “Anomalous temperature reduction of electron-cooled heavy ion beams in the storage ring ESR,” Phys. Rev. Lett. 77, 3803–3815 (1996).

    Article  ADS  Google Scholar 

  26. H. Danared, A. Kaelberg, and A. Simonsson, “One-dimensional ordering in coasting and bunched beams,” J. Phys. B 36, 1003–1010 (2003).

    ADS  Google Scholar 

  27. T. Shirai, A. Noda, I. Meshkov, and A. Smirnov (Kyoto Univ.–NIRS–JINR Collab.), “One-dimensional beam ordering of protons in a storage ring,” Phys. Rev. Lett. 98, 204801–204804 (2007).

    Article  ADS  Google Scholar 

  28. L. V. Grigorenko for the DERICA Collab., “DERICA project: Dubna electron–radioactive isotope collider facility,” Phys. Nucl. Part. Lett. 15, 997–1001 (2018).

  29. G. I. Budker, N. S. Dikanskii, I. N. Meshkov, V. V. Parkhomchuk, D. V. Pestrikov, S. G. Popov, and A. N. Skrinsky, “Capabilities of spectrometric experiments with hyper-thin internal targets in electron-cooled storage rings of heavy charged particles,” in Proceedings of the X International Conference on High-Energy Accelerators, Protvino, July 1977 (Inst. High-Energy Phys., Protvino, 1977), Vol. 2, pp. 141–147 [in Russian].

  30. I. Meshkov, G. Muenzenberg, G. Schrieder, E. Syresin, and G. Ter-Akopian, “The investigation of nuclear structure with storage rings-present and future,” Nucl. Instrum. Methods Phys. Res., Sect. A 391, 224–227 (1997).

    Google Scholar 

  31. G. M. Ter-Akopian, W. Greiner, I. N. Meshkov, Y. T. Oganessian, J. Reinhardt, and G. V. Trubnikov, “Layout of new experiments on the observation of spontaneous electron-positron pair creation in supercritical Coulomb fields,” Int. J. Mod. Phys. E 24, 1550016 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.A. Lebedev, S.S. Nagaitsev, and E.B. Levichev for helpful discussions, J. Jowett and S. Yamaguchi for providing valuable information, D.N. Shatilov and A.O. Sidorin for numerous critical comments and recommendations on the manuscript, and Zh.L. Mal’tseva for valuable advice during numerical calculations.

The work was performed in connection with the implementation of the NICA [1] and DERICA [24] projects at JINR. The author thanks his colleagues for working together on these projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Meshkov.

Additional information

Translated by M. Potapov

APPENDIX: THIN LENS APPROXIMATION

APPENDIX: THIN LENS APPROXIMATION

The frequency shift of betatron oscillations ξ12 due to the beam–beam effect can be found by multiplying the matrix of the transformation for the particle revolution in the collider ring (so-called Twiss matrix)

$$\begin{gathered} {{M}_{{{\text{Ring}}}}} = \left( {\begin{array}{*{20}{c}} {\cos {{\varphi }_{0}} + \alpha \sin {{\varphi }_{0}}}&{\beta \sin {{\varphi }_{0}}} \\ { - \gamma \sin {{\varphi }_{0}}}&{\cos {{\varphi }_{0}} - \alpha \sin {{\varphi }_{0}}} \end{array}} \right), \\ {{\varphi }_{0}} = 2\pi Q, \\ \end{gathered} $$

by the thin lens matrix

$${{M}_{f}} = \left( {\begin{array}{*{20}{c}} 1&0 \\ { - \frac{1}{f}}&1 \end{array}} \right),$$

where the focal length f of the thin lens must be related to the phase shift of the betatron oscillations.

Considering the perturbation introduced by the thin lens, we find the matrix of the transformation M* by multiplying the matrices MRing and Mf

$$M* = {{M}_{{{\text{Ring}}}}}{{M}_{f}} = \left( {\begin{array}{*{20}{c}} {\cos {{\varphi }_{0}} + {{\alpha }_{0}}\sin {{\varphi }_{0}} - \frac{{{{\beta }_{0}}}}{f}\sin {{\varphi }_{0}}}&{{{\beta }_{0}}\sin {{\varphi }_{0}}} \\ { - {{\gamma }_{0}}\sin {{\varphi }_{0}} - \frac{1}{f}\cos {{\varphi }_{0}} + \frac{{{{\alpha }_{0}}}}{f}\sin {{\varphi }_{0}}}&{\cos {{\varphi }_{0}} - {{\alpha }_{0}}\sin {{\varphi }_{0}}} \end{array}} \right).$$
((А.1))

Representing the terms of the matrix M* as

$$\begin{gathered} \varphi * = {{\varphi }_{0}} + \Delta \varphi ,\,\,\,\,~\Delta \varphi \ll {{\varphi }_{0}};\,\,\,\,~\beta = {{\beta }_{0}} + \Delta \beta ; \\ ~\alpha = {{\alpha }_{0}} + \Delta \alpha ,\,\,\,\,~\gamma = {{\gamma }_{0}} + \Delta \gamma , \\ \end{gathered} $$

where Δφ, Δα, Δβ, Δγ are the perturbations introduced by the thin lens, we write the matrix М* as

$$\begin{gathered} M* \equiv {{M}_{{\Delta }}} \\ = \left( {\begin{array}{*{20}{c}} {\cos \varphi {\text{*}} + \alpha \Delta \sin \varphi {\text{*}}}&{\beta \sin \varphi {\text{*}}} \\ { - \gamma \sin \varphi {\text{*}}}&{\cos \varphi {\text{*}} - \alpha \sin \varphi {\text{*}}} \end{array}} \right). \\ \end{gathered} $$
((А.2))

Equating the corresponding terms of matrices (А.1) and (А.2), we obtain in the linear Δ-term approximation

$$\begin{gathered} m_{{11}}^{*} = m_{{11}}^{\Delta } \to - \frac{{{{\beta }_{0}}}}{f}\sin {{\varphi }_{0}} \\ = - \Delta \varphi \left( {\sin {{\varphi }_{0}} - {{\alpha }_{0}}\cos {{\varphi }_{0}}} \right) + \Delta \alpha \sin {{\varphi }_{0}}, \\ \end{gathered} $$
$$m_{{12}}^{*} = m_{{12}}^{\Delta } \to 0 = {{\beta }_{0}}\cos {{\varphi }_{0}}\Delta \varphi + \Delta \beta \sin {{\varphi }_{0}},$$
$$\begin{gathered} m_{{21}}^{*} = m_{{21}}^{\Delta } \to - \frac{{\cos {{\varphi }_{0}}}}{f} + \frac{{{{\alpha }_{0}}\sin {{\varphi }_{0}}}}{f} \\ = {{\gamma }_{0}}\Delta \varphi \cos {{\varphi }_{0}} - \Delta \gamma \sin {{\varphi }_{0}}, \\ \end{gathered} $$
$$\begin{gathered} m_{{22}}^{*} = m_{{22}}^{\Delta } \to 0 \\ = - \Delta \varphi \left( {\sin {{\varphi }_{0}} + {{\alpha }_{0}}\cos {{\varphi }_{0}}} \right) - \Delta \alpha \sin {{\varphi }_{0}}. \\ \end{gathered} $$

Thus, we obtained four equations in the unknowns Δφ, Δα, Δβ, and Δγ

$$\Delta \varphi \left( {\sin {{\varphi }_{0}} - {{\alpha }_{0}}\cos {{\varphi }_{0}}} \right) - \Delta \alpha \sin {{\varphi }_{0}} = \frac{{{{\beta }_{0}}}}{f}\sin {{\varphi }_{0}},$$
$$\Delta \varphi {{\beta }_{0}}\cos {{\varphi }_{0}} + \Delta \beta \sin {{\varphi }_{0}} = 0,$$
$$ - \Delta \varphi {{\gamma }_{0}}\cos {{\varphi }_{0}} - \Delta \gamma \sin {{\varphi }_{0}} = - \frac{1}{f}\left( {\cos {{\varphi }_{0}} - {{\alpha }_{0}}\sin {{\varphi }_{0}}} \right),$$
$$\Delta \varphi \left( {\sin {{\varphi }_{0}} + {{\alpha }_{0}}\cos {{\varphi }_{0}}} \right) + \Delta \alpha \sin {{\varphi }_{0}} = 0.$$

Solving this system of linear equations by the known determinant calculation method, we find the determinant of the system \({\text{De}}{{{\text{t}}}_{\Delta }} = - 2{{\sin }^{4}}{{\varphi }_{0}}\) and the determinant with the replacement of the first column in DetΔ by the coefficients of the right-hand side of the system \({\text{De}}{{{\text{t}}}_{\varphi }} = ~ - \frac{{{{\beta }_{0}}}}{f}{{\sin }^{4}}{{\varphi }_{{0~}}}\). Their ratio yields the desired phase shift φ in the presence of the thin lens

$$\Delta \varphi = \frac{{{\text{De}}{{{\text{t}}}_{\varphi }}}}{{{\text{De}}{{{\text{t}}}_{\Delta }}}} = \frac{{{{\beta }_{0}}}}{{2f}}.$$

This expression for Δφ exactly coincides with (2.15), since \(~{{\beta }_{0}} \equiv B_{{x1}}^{*}\) is the betatron function at the location of the “perturbing” thin lens (in its absence), and the focal length is ffBB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshkov, I.N. Luminosity of an Ion Collider. Phys. Part. Nuclei 50, 663–682 (2019). https://doi.org/10.1134/S1063779619060042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619060042

Navigation