Electromagnetic Interactions of Nuclei at the FCC-hh Collider

Abstract

At the Future Circular Collider (FCC-hh) at CERN in addition to proton-proton collisions it is planned to study interactions of 208Pb nuclei with the collision energy \(\sqrt {{{s}_{{NN}}}} = 39.4\) TeV, which is 7–8 times higher than that achieved at the LHC. The electromagnetic dissociation (EMD) of \(^{{208}}\)Pb nuclei, along with the electron capture resulting from the multiple production of e\(^{ + }\)e\(^{ - }\) pairs in ultraperipheral collisions at the LHC, lead to a significant luminosity decay, and secondary ions impose a well localized thermal load on superconducting magnets. As expected, such effects are reduced in collisions of light and medium nuclei. In the present work the EMD cross sections for collisions of \(^{{40}}\)Ar, \(^{{40}}\)Ca, \(^{{63}}\)Cu, \(^{{78}}\)Kr, \(^{{84}}\)Kr, \(^{{115}}\)In, \(^{{129}}\)Xe, \(^{{208}}\)Pb and \(^{{238}}\)U at the LHC and the planned FCC-hh were calculated in order to assess the operation conditions of the colliders. The results were compared with results of the RELDIS model, and the uncertainties of calculations of the EMD cross sections associated with using of various approximations of the total nuclear photoabsorption cross sections were estimated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    G. E. Bruno, EPJ Web Conf. 95, 06 001 (2015).

  2. 2

    F. Noferini, J. Phys. Conf. Ser. 1014, 012 010 (2018).

    Article  Google Scholar 

  3. 3

    R. Bruce, et al., “New physics searches with heavy-ion collisions at the LHC” (2018). arXiv:1812.07688.

  4. 4

    Z. Citron, et al., “Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams” (2018). arXiv:1812.06 772.

  5. 5

    A. V. Bogomyagkov, et al., Phys. Part. Nucl. Lett. 13, 870–875 (2016).

    Article  Google Scholar 

  6. 6

    M. Benedikt and F. Zimmermann, J. Korean Phys. Soc. 69, 893–902 (2016).

    ADS  Article  Google Scholar 

  7. 7

    M. Schaumann, Phys. Rev. Spec. Top. Accel. Beams 18, 1–23 (2015).

    MathSciNet  Article  Google Scholar 

  8. 8

    B. Abelev, et al., Phys. Rev. Lett. 109, 252302 (2012).

    ADS  Article  Google Scholar 

  9. 9

    R. Bruce, J. M. Jowett, M. Blaskiewicz, and W. Fischer, Phys. Rev. Spec. Top. Accel. Beams 13, 091 001 (2010).

    Article  Google Scholar 

  10. 10

    R. Bruce, D. Bocian, S. Gilardoni, and J. M. Jowett, Phys. Rev. Spec. Top. Accel. Beams 12, 071 002 (2009).

    Article  Google Scholar 

  11. 11

    C. A. Bertulani and G. Baur, Phys. Rep. 163, 299–408 (1988).

    ADS  Article  Google Scholar 

  12. 12

    A. Baltz, et al., Phys. Rep. 458, 1–171 (2008).

    ADS  Article  Google Scholar 

  13. 13

    I. Pshenichnov, Phys. Part. Nucl. 42, 215–250 (2011).

    Article  Google Scholar 

  14. 14

    I. A. Pshenichnov, et al., Phys. Rev. C 57, 1920–1926 (1998).

  15. 15

    M. V. Kossov, Eur. Phys. J. A 14, 377–392 (2002).

    ADS  Article  Google Scholar 

  16. 16

    D. O. Caldwell, et al., Phys. Rev. D: Part. Fields 7, 1362–1383 (1973).

    ADS  Article  Google Scholar 

  17. 17

    D. Groom, et al. (Particle Data Group), Eur. Phys. J. C 3, 7–865 (1998).

    Article  Google Scholar 

  18. 18

    M. MacCormick, et al., Phys. Rev. C 53, 41–49. (1996).

    ADS  Article  Google Scholar 

  19. 19

    N. Bianchi, et al., Phys. Rev. C 54, 1688–1699 (1996).

    ADS  Article  Google Scholar 

  20. 20

    G. R. Brookes, et al., Phys. Rev. D: Part. Fields 8, 2826–2836 (1973).

    ADS  Article  Google Scholar 

  21. 21

    S. Michalowski, et al., Phys. Rev. Lett. 39, 737–740 (1977).

    ADS  Article  Google Scholar 

  22. 22

    D. O. Caldwell, et al., Phys. Rev. Lett. 42, 553–556 (1979).

    ADS  Article  Google Scholar 

  23. 23

    N. Bianchi, et al., Phys. Lett. B 325, 333–336 (1994).

    ADS  Article  Google Scholar 

  24. 24

    C. Chollet, et al., Phys. Lett. B 127, 331–335 (1983).

    ADS  Article  Google Scholar 

  25. 25

    E. A. Arakelyan, et al., Phys. Lett. B 79, 143–146 (1978).

    ADS  Article  Google Scholar 

  26. 26

    A. Koning and D. Rochman, Nucl. Data Sheeets 113, 2841–2934 (2012).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to I. A. Pshenichnov or S. A. Gunin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pshenichnov, I.A., Gunin, S.A. Electromagnetic Interactions of Nuclei at the FCC-hh Collider. Phys. Part. Nuclei 50, 501–505 (2019). https://doi.org/10.1134/S1063779619050198

Download citation