Physics of Particles and Nuclei

, Volume 50, Issue 5, pp 501–505 | Cite as

Electromagnetic Interactions of Nuclei at the FCC-hh Collider

  • I. A. PshenichnovEmail author
  • S. A. GuninEmail author


At the Future Circular Collider (FCC-hh) at CERN in addition to proton-proton collisions it is planned to study interactions of 208Pb nuclei with the collision energy \(\sqrt {{{s}_{{NN}}}} = 39.4\) TeV, which is 7–8 times higher than that achieved at the LHC. The electromagnetic dissociation (EMD) of \(^{{208}}\)Pb nuclei, along with the electron capture resulting from the multiple production of e\(^{ + }\)e\(^{ - }\) pairs in ultraperipheral collisions at the LHC, lead to a significant luminosity decay, and secondary ions impose a well localized thermal load on superconducting magnets. As expected, such effects are reduced in collisions of light and medium nuclei. In the present work the EMD cross sections for collisions of \(^{{40}}\)Ar, \(^{{40}}\)Ca, \(^{{63}}\)Cu, \(^{{78}}\)Kr, \(^{{84}}\)Kr, \(^{{115}}\)In, \(^{{129}}\)Xe, \(^{{208}}\)Pb and \(^{{238}}\)U at the LHC and the planned FCC-hh were calculated in order to assess the operation conditions of the colliders. The results were compared with results of the RELDIS model, and the uncertainties of calculations of the EMD cross sections associated with using of various approximations of the total nuclear photoabsorption cross sections were estimated.


  1. 1.
    G. E. Bruno, EPJ Web Conf. 95, 06 001 (2015).Google Scholar
  2. 2.
    F. Noferini, J. Phys. Conf. Ser. 1014, 012 010 (2018).CrossRefGoogle Scholar
  3. 3.
    R. Bruce, et al., “New physics searches with heavy-ion collisions at the LHC” (2018). arXiv:1812.07688.Google Scholar
  4. 4.
    Z. Citron, et al., “Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams” (2018). arXiv:1812.06 772.Google Scholar
  5. 5.
    A. V. Bogomyagkov, et al., Phys. Part. Nucl. Lett. 13, 870–875 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Benedikt and F. Zimmermann, J. Korean Phys. Soc. 69, 893–902 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    M. Schaumann, Phys. Rev. Spec. Top. Accel. Beams 18, 1–23 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    B. Abelev, et al., Phys. Rev. Lett. 109, 252302 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    R. Bruce, J. M. Jowett, M. Blaskiewicz, and W. Fischer, Phys. Rev. Spec. Top. Accel. Beams 13, 091 001 (2010).CrossRefGoogle Scholar
  10. 10.
    R. Bruce, D. Bocian, S. Gilardoni, and J. M. Jowett, Phys. Rev. Spec. Top. Accel. Beams 12, 071 002 (2009).CrossRefGoogle Scholar
  11. 11.
    C. A. Bertulani and G. Baur, Phys. Rep. 163, 299–408 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    A. Baltz, et al., Phys. Rep. 458, 1–171 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    I. Pshenichnov, Phys. Part. Nucl. 42, 215–250 (2011).CrossRefGoogle Scholar
  14. 14.
    I. A. Pshenichnov, et al., Phys. Rev. C 57, 1920–1926 (1998).Google Scholar
  15. 15.
    M. V. Kossov, Eur. Phys. J. A 14, 377–392 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    D. O. Caldwell, et al., Phys. Rev. D: Part. Fields 7, 1362–1383 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    D. Groom, et al. (Particle Data Group), Eur. Phys. J. C 3, 7–865 (1998).CrossRefGoogle Scholar
  18. 18.
    M. MacCormick, et al., Phys. Rev. C 53, 41–49. (1996).ADSCrossRefGoogle Scholar
  19. 19.
    N. Bianchi, et al., Phys. Rev. C 54, 1688–1699 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    G. R. Brookes, et al., Phys. Rev. D: Part. Fields 8, 2826–2836 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    S. Michalowski, et al., Phys. Rev. Lett. 39, 737–740 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    D. O. Caldwell, et al., Phys. Rev. Lett. 42, 553–556 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    N. Bianchi, et al., Phys. Lett. B 325, 333–336 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    C. Chollet, et al., Phys. Lett. B 127, 331–335 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    E. A. Arakelyan, et al., Phys. Lett. B 79, 143–146 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    A. Koning and D. Rochman, Nucl. Data Sheeets 113, 2841–2934 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyMoscowRussia

Personalised recommendations