Skip to main content
Log in

Terahertz Solitons in Condensed Media

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Theoretical approaches to the formation and propagation of soliton-like broadband electromagnetic and acoustic pulses with terahertz frequencies in condensed media are reviewed. Solitons of different types are analyzed and controlling their parameters by modifying the nonlinear medium is discussed. Nonlinear molecular excitations in biopolymers whose frequencies fall into the terahertz range are considered, and their interactions with external fields of resonant frequencies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Lee Yun-Shik, Principles of Terahertz Science and Technology (New York: Springer, 2009).

  2. G. L. Carr, M. C. Martin, W. R. McKinney et al., Nature 420, 153–156 (2002).

    Article  ADS  Google Scholar 

  3. G. N. Kulipanov, N. G. Gavrilov, B. A. Knyazev et al., Terahertz Science and Technology 1, 107–125 (2008).

    Google Scholar 

  4. Yuzhen Shen, Xi Yang, G. L. Carr et al., Phys. Rev. Lett. 107, 204801 (2011).

    Article  ADS  Google Scholar 

  5. G. Kh. Kitaeva, Laser Phys. Lett. 5, 559–576 (2008).

    Article  ADS  Google Scholar 

  6. M. C. Hoffmann and J. A. Fulop, J. Phys. D 44, 083001 (2011).

    Article  ADS  Google Scholar 

  7. M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446–448 (1962).

    Article  ADS  Google Scholar 

  8. B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Elektronika 7, 5–33 (1980).

    ADS  Google Scholar 

  9. S. A. Akhmanov and V. E. Gusev, Phys. Usp. 35, 153–191 (1992).

    Article  Google Scholar 

  10. P. J. S. van Capel and J. I. Dijkhuis, Phys. Rev. B 81, 144106 (2010).

    Article  ADS  Google Scholar 

  11. O. Matsuda, M. C. Larciprete, R. L. Voti, and O. B. Wright, Ultrasonics 56, 3 (2015).

    Article  Google Scholar 

  12. P. J. S. van Capel, E. Peronne, and J. I. Dijkhuis, Ultrasonics 56, 36 (2015).

    Article  Google Scholar 

  13. T. Czerniuk, T. Ehrlich, T. Wecker et al., Phys. Rev. Appl. 7, 014006 (2017).

    Article  ADS  Google Scholar 

  14. A. Casiraghi, P. Walker, A. V. Akimov et al., Appl. Phys. Lett. 99, 262503 (2011).

    Article  ADS  Google Scholar 

  15. M. Bombeck, J. V. Jager, A. V. Scherbakov et al., Phys. Rev. B 87, 060302 (2013).

    Article  ADS  Google Scholar 

  16. A. V. Scherbakov, P. J. S. van Capel, A. V. Akimov et al., Phys. Rev. Lett. 99, 057402 (2007).

    Article  ADS  Google Scholar 

  17. E. S. K. Young, A. V. Akimov, M. Henini et al., Phys. Rev. Lett. 108, 226601 (2012).

    Article  ADS  Google Scholar 

  18. V. I. Fedorov, et al., Biophysics 46, 293–297 (2001).

    Google Scholar 

  19. S. Alexandrov et al., Phys. Lett. A 374, 1214–1217 (2010).

    Article  ADS  Google Scholar 

  20. J. Bock et al., PLoS Biol. 5, e15806 (2010).

    ADS  Google Scholar 

  21. C. P. Hauri, C. Ruchert, C. Vicario, and F. Ardana, Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  22. R. Rajharaman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (Amsterdam: North-Holland, 1982).

    Google Scholar 

  23. M. J. Ablowitz and H Segur, Solitons and the Inverse Scattering Transform (Philadelphia: Siam, 1981).

    Book  MATH  Google Scholar 

  24. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons, and Chaos (Cambridge: University Press, 2000).

    Book  MATH  Google Scholar 

  25. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (San Diego: Elsevier Academic Press, 2003).

    Google Scholar 

  26. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745–1759 (1972).

    Google Scholar 

  27. D. J. Benney, Studies in Appl. Math. 56, 81–94 (1977).

    Article  Google Scholar 

  28. A. S. Davydov and N. I. Kislyukha, Zh. Eksp. Teor. Fiz. 71, 1090–1098 (1976).

    ADS  Google Scholar 

  29. A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321–2323 (1996).

    Article  ADS  Google Scholar 

  30. G. A. Askar’yan, Zh. Eksp. Teor. Fiz. 42, 1360–1364 (1962).

    Google Scholar 

  31. U. A. Abdullin, G. A. Lyakhov, O. V. Rudenko, and A. S. Chirkin, Zh. Eksp. Teor. Fiz. 66, 1295–1304 (1974).

    ADS  Google Scholar 

  32. D. A. Bagdasaryan, A. O. Makaryan, and P. S. Pogosyan, Pis’ma Zh. Eksp. Teor. Fiz. 37, 498–500 (1983).

    Google Scholar 

  33. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555–1558 (1984).

    Article  ADS  Google Scholar 

  34. S. B. Bodrov, A. N. Stepanov, M. I. Bakunov et al., Opt. Express 17, 1871–1879 (2009).

    Article  ADS  Google Scholar 

  35. Y. S. Lee, T. Meade, V. Perlin et al., Appl. Phys. Lett. 76, 2505–2507 (2000).

    Article  ADS  Google Scholar 

  36. K. L. Vodopyanov, M. M. Fejer, X. Yu et al., Appl. Phys. Lett. 89, 141119 (2006).

    Article  ADS  Google Scholar 

  37. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161–1166 (2002).

    Article  ADS  Google Scholar 

  38. S. W. Huang, E. Granados, W. R. Huang et al., Opt. Lett. 38, 796–798 (2013).

    Article  ADS  Google Scholar 

  39. A. Chowdhury and J. A. Tataronis, Phys. Rev. Lett. 100, 153905 (2008).

    Article  ADS  Google Scholar 

  40. J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, Opt. Express 11, 2486–2496 (2003).

    Article  ADS  Google Scholar 

  41. S. Vidal, J. Degert, J. Oberle, and E. Freysz, J. Opt. Soc. Am. B 27, 1044–1050.

  42. C. Zhang, Y. Avetisyan, A. Glosser et al., Opt. Express 20, 8784–8790 (2012).

    Article  ADS  Google Scholar 

  43. A. K. Popov, S. A. Myslivets, E. Tieman et al., JETP Lett. 69, 912–916 (1999).

    Article  ADS  Google Scholar 

  44. A. N. Bugay and S. V. Sazonov, Phys. Lett. A 374, 1093–1096 (2010).

    Article  ADS  Google Scholar 

  45. A. N. Bugay and S. V. Sazonov, JETP Lett. 92, 232–237 (2010).

    Article  ADS  Google Scholar 

  46. A. N. Bugay and S. V. Sazonov, JETP Lett. 98, 638–643 (2014).

    Article  Google Scholar 

  47. E. Gaizauskas, V. Vaicaitis, O. Fedotova, and O. Khasanov, Opt. Mat. Express 5, 623–628 (2015).

    Article  ADS  Google Scholar 

  48. S. V. Sazonov and A. F. Sobolevskii, JETP 96, 1019–1036 (2003).

    Article  ADS  Google Scholar 

  49. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (London: Academic Press, 1982).

    MATH  Google Scholar 

  50. A. P. Sukhorukov, Nonlinear Wave Interactions in Optics and Radiophysics (Moscow: Nauka, 1988) [in Russian].

    Google Scholar 

  51. N. D. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (New York: Springer, 2005).

    Google Scholar 

  52. G. D. Boyd and M. A. Pollack, Phys. Rev. B 7, 5345–5359 (1973).

    Article  ADS  Google Scholar 

  53. S. A. Kozlov and S. V. Sazonov, JETP 84, 221–228 (1997).

    Article  ADS  Google Scholar 

  54. E. V. Kazantseva, A. I. Maimistov, and J. G. Caputo, Phys. Rev. E 71, 056622 (2005).

    Article  ADS  Google Scholar 

  55. K. Dolgaleva, D. V. Materikina, R. W. Boyd, and S. A. Kozlov, Phys. Rev. A 92, 023809 (2015).

    Article  ADS  Google Scholar 

  56. S. V. Sazonov, JETP 92, 361–373 (2001).

    Article  ADS  Google Scholar 

  57. H. Leblond and D. Mihalache, Phys. Rep. 523, 61–126 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  58. H. Vogt, Phys. Rev. B 58, 9916 (1998).

    Article  ADS  Google Scholar 

  59. W. Yang, S. Gong, R. Li, and Z. Xu, Phys. Rev. A 74, 013407 (2006).

    Article  ADS  Google Scholar 

  60. M. Kocinac, Z. Iconic, and V. Milanovic, Opt. Comm. 140, 89–92 (1997).

    Article  ADS  Google Scholar 

  61. R. J. Warburton, C. Schulhauser, D. Haft et al., Phys. Rev. B 65, 113303 (2006).

    Article  ADS  Google Scholar 

  62. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  63. A. I. Maimistov, Quantum Electronics 30, 287–304 (2000).

    Article  ADS  Google Scholar 

  64. A. N. Bugai and S. V. Sazonov, JETP Lett. 87, 403–408 (2008).

    Article  ADS  Google Scholar 

  65. A. G. Stepanov, A. A. Mel’nikov, V. O. Kompanets, and S. V. Chekalin, JETP Lett. 85, 227–230 (2007).

    Article  ADS  Google Scholar 

  66. S. V. Sazonov and A. F. Sobolevskii, Quantum Electronics 35, 1019–1026 (2005).

    Article  ADS  Google Scholar 

  67. N. Yajima and M. Oikawa, Progr. Theor. Phys. 56, 1719–1739 (1976).

    Article  ADS  Google Scholar 

  68. A. A. Zabolotskii, Sov. Phys. JETP 67, 2195–2201 (1988).

    Google Scholar 

  69. S. V. Sazonov and N. V. Ustinov, JETP 100, 256–271 (2005).

    Article  ADS  Google Scholar 

  70. G. L. Lamb Jr., Elements of Soliton Theory (New York: Wiley&Sons, 1980).

    MATH  Google Scholar 

  71. S. V. Sazonov, Roman. Rep. Phys. 70, 401 (2018).

    Google Scholar 

  72. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov et al., JETP Lett. 105, 408–418 (2017).

    Article  ADS  Google Scholar 

  73. C. V. Sazonov, JETP 98, 1237–1249 (2004).

    Article  ADS  Google Scholar 

  74. C. V. Sazonov, JETP 103, 126–140 (2006).

    Article  ADS  Google Scholar 

  75. A. N. Bugay and S. V. Sazonov, Phys. Rev. E 74, 066608 (2006).

    Article  ADS  Google Scholar 

  76. F. V. Bunkin, Yu. A. Kravtsov, and G. A. Lyakhov, Phys. Usp. 29, 607–619 (1986).

    Article  ADS  Google Scholar 

  77. V. R. Nagibarov and U. H. Kopvillem, Zh. Eksp. Teor. Fiz. 52, 936–942 (1967).

    Google Scholar 

  78. N. S. Shiren, Phys. Rev. B 2, 2471–2487 (1970).

    Article  ADS  Google Scholar 

  79. S. V. Sazonov, J. Phys. Condens. Matter 4, 6485–6490 (1992).

    Article  ADS  Google Scholar 

  80. S. V. Sazonov and L. S. Yakupova, J. Phys. Condens. Matter 4, 6479–6484 (1992).

    Article  ADS  Google Scholar 

  81. S. V. Sazonov, J. Phys. Condens. Matter 6, 6295–6304 (1994).

    Article  ADS  Google Scholar 

  82. S. V. Sazonov, JETP 91, 16–30 (2000).

    Article  ADS  Google Scholar 

  83. A. A. Zabolotskii, Phys. Rev. E 67, 066606 (2003).

    Article  ADS  Google Scholar 

  84. A. N. Bugai and S. V. Sazonov, Phys. Solid State 47, 1914 (2005).

    Article  ADS  Google Scholar 

  85. A. N. Bugai and S. V. Sazonov, Phys. Solid State 49, 118 (2007).

    Article  ADS  Google Scholar 

  86. S. V. Sazonov and N. V. Ustinov, JETP 103, 571–573 (2006).

    ADS  Google Scholar 

  87. H. -Y. Hao and H. J. Maris, Phys. Rev. B 64, 064302 (2001).

    Article  ADS  Google Scholar 

  88. W. Singhsomroje and H. J. Maris, Phys. Rev. B 69, 174303 (2004).

    Article  ADS  Google Scholar 

  89. E. Peronne, N. Chuecos, L. Thevenard, and B. Perrin, Phys. Rev. B 95, 064306 (2017).

    Article  ADS  Google Scholar 

  90. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibulin, Magnetic Quantum Acoustics (Moscow: Nauka, 1977) [in Russian].

    Google Scholar 

  91. G. Taker and V. Rampton, Hyper-Sound in Solids (New York–London: Academic Press, 1971).

    Google Scholar 

  92. Charles Kittel, Introduction to Solid-State Physics (New York: Wiley&Sons, 2004).

    MATH  Google Scholar 

  93. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics (Moscow: Nauka, 1966) [in Russian].

    Google Scholar 

  94. O. M. Braun and Yu. Kivshar, The Frenkel–Kontorova Model: Concepts, Methods, and Applications (Berlin: Springer, 2004).

    Book  MATH  Google Scholar 

  95. E. H. Jacobsen and K. W. H. Stevens, Phys. Rev. 129, 2036 (1963).

    Article  ADS  Google Scholar 

  96. E. M. Belenov, A. V. Nazarkin, and V. A. Ushchapovskii, Zh. Eksp. Teor. Fiz. 100, 762–775 (1991).

    ADS  Google Scholar 

  97. S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Berlin: Springer, 1984).

    MATH  Google Scholar 

  98. L. V. Yakushevich, Nonlinear Physics of DNA (Weinheim: Wiley-VCH, 2004).

    Book  MATH  Google Scholar 

  99. A. S. Davydov, Solitons in Molecolar Systems (Amsterdam: Springer, 1985).

    Book  Google Scholar 

  100. S. W. Englander, N. R. Kallenbach, A. J. Heeger et al., Proc. Nat. Acad. Sci. USA 77, 7222–7226 (1980).

    Article  ADS  Google Scholar 

  101. S. Yomosa, Phys. Rev. A 27, 2120–2125 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  102. S. Takeno and S. Homma, Prog. Theor. Phys. 70, 308–311 (1983).

    Article  ADS  Google Scholar 

  103. V. K. Fedyanin and V. Lisy, Stud. Biophys. 116, 65–77 (1986).

    Google Scholar 

  104. L. V. Yakushevich, Phys. Lett. A 136, 413–417 (1989).

    Article  ADS  Google Scholar 

  105. L. V. Yakushevich, A. V. Savin, and L. I. Manevitch, Phys. Rev. E 66, 016614 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  106. M. Barbi, S. Cocco, and M. Peyrard, Phys. Lett. A 253, 358–369 (1999).

    Article  ADS  Google Scholar 

  107. A. Campa, Phys. Rev. E 63, 021901 (2001).

    Article  ADS  Google Scholar 

  108. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755–2758 (1989).

    Article  ADS  Google Scholar 

  109. T. Dauxois, M. Peyrard, and A. R. Bishop, Phys. Rev. E 47, R44 (1993).

    Article  ADS  Google Scholar 

  110. M. Barbi, S. Lepri, M. Peyrard, and N. Theodorakopoulos, Phys. Rev. E 68, 061909 (2003).

    Article  ADS  Google Scholar 

  111. S. N. Volkov, J. Theor. Biol. 143, 485 (1990).

    Article  Google Scholar 

  112. W. Lim, Phys. Rev. E 75, 031918 (2007).

    Article  ADS  Google Scholar 

  113. S. Cocco and R. Monasson, Phys. Rev. Lett. 83, 5178 (1999).

    Article  ADS  Google Scholar 

  114. S. Kumar and M. S. Li, Phys. Rep. 486, 1 (2010).

    Article  ADS  Google Scholar 

  115. S. Zdravkovic, J. Nonlin. Math. Phys 18, 463 (2011).

    Google Scholar 

  116. P. L. Christiansen, P. S. Lomdahl, and V. Muto, Nonlinearity 4, 447 (1991).

    Article  ADS  Google Scholar 

  117. G. Gaeta and L. Venier, Phys. Rev. E 78, 011901 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  118. C. B. Tabi, J. Phys. Condens. Matter 22, 414107 (2010).

    Article  Google Scholar 

  119. J. W. Powell, G. S. Edwards, L. Genzel et al., Phys. Rev. A 35, 3929 (1987).

    Article  ADS  Google Scholar 

  120. C. B. Tabi, A. Mohamadou, and T. C. Kofane, Phys. Lett. A 373, 2476 (2009).

    Article  ADS  Google Scholar 

  121. A. N. Bugay and G. F. Aru, Nonlin. Phenom. Complex Syst. 17, 1–9 (2014).

    Google Scholar 

  122. A. N. Bugai, Bull. Russ. Acad. Sci.: Phys. 75, 1579–1581 (2011).

    Article  Google Scholar 

  123. A. N. Bugay, Nanosystems: Phys., Chem., Math. 3, 51–55 (2012).

    Google Scholar 

  124. N. Gronbech-Jensen, Yu. S. Kivshar, and M. R. Samuelsen, Phys. Rev. B 43, 5698 (1991).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I wish to thank S.V. Sazonov for a long-term collaboration and assistance. This work was supported by the Russian Foundation for Basic Research under grant no. 16-02-00453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bugay.

Additional information

Translated by A. Asratyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugay, A.N. Terahertz Solitons in Condensed Media. Phys. Part. Nuclei 50, 210–229 (2019). https://doi.org/10.1134/S1063779619020023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779619020023

Navigation