Skip to main content
Log in

Cyclotomic Shuffles

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Analogues of 1-shuffle elements for complex reflection groups of type \(G(m,1,n)\) are introduced. A geometric interpretation for \(G(m,1,n)\) in terms of rotational permutations of polygonal cards is given. We compute the eigenvalues, and their multiplicities, of the 1-shuffle element in the algebra of the group \(G(m,1,n)\). Considering shuffling as a random walk on the group \(G(m,1,n)\), we estimate the rate of convergence to randomness of the corresponding Markov chain. We report on the spectrum of the 1-shuffle analogue in the cyclotomic Hecke algebra \(H(m,1,n)\) for \(m = 2\) and small \(n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Ariki and K. Koike, “A Hecke algebra of \(\left( {{\mathbb{Z} \mathord{\left/ {\vphantom {\mathbb{Z} {r\mathbb{Z}}}} \right. \kern-0em} {r\mathbb{Z}}}} \right)\wr {{S}_{n}}\) and construction of its irreducible representations,” Adv. Math. 106 (2), 216 (1994).

    Article  MathSciNet  Google Scholar 

  2. J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, “Combinatorial aspects of multiple zeta values,” Electr. J. Combinatorics 5 (1), R38 (1998).

    MathSciNet  MATH  Google Scholar 

  3. D. Bowman and D. Bradley, “Multiple polylogarithms: A brief survey,” Contemp. Math. 291, 71 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Coxeter and J. Todd, “A practical method for enumerating cosets of a finite abstract group,” Proc. Edinburgh Math. Soc. 5, 26 (1936).

    Article  MATH  Google Scholar 

  5. P. Diaconis, J. A. Fill, and J. Pitman, “Analysis of top to random shuffles,” Combinatorics, Probab. Comput. 1, 135 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Garsia and N. Wallach, “Qsym over Sym is free,” J. Combinatorial Theory, Ser. A 104, 217 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Grapperon and O. V. Ogievetsky, “Braidings of tensor spaces,” Lett. Math. Phys. 100, 17 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. P. Isaev and O. V. Ogievetsky, “BRST operator for quantum Lie algebras: Explicit formula,” Int. J. Mod. Phys. A 19, 240 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. P. Isaev and O. V. Ogievetsky, “Braids, shuffles and symmetrizers,” J. Phys. A: Math. Theor. 42, 1 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Lorek, “Speed of convergence to stationarity for stochastically monotone Markov chains,” PhD Thesis (Math. Inst. Univ. Wroclaw, 2007).

  11. G. Lusztig, “A q-analogue of an identity of N. Wallach,” in Studies in Lie Theory, 405 (2006).

  12. S. Mac Lane, Homology, Classics in Mathematics, Vol. 114 (Springer, 1963).

    Google Scholar 

  13. W. D. Nichols, “Bialgebras of type one,” Commun. Algebra 6, 1521 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  14. O. V. Ogievetsky and L. Poulain d’Andecy, “On representations of cyclotomic Hecke algebras,” Mod. Phys. Lett. A 26, 795 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. O. V. Ogievetsky and L. Poulain d’Andecy, “An inductive approach to representations of complex reflection groups \(G(m,1,n)\),” Theor. Math. Phys. 174, 95 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. O. V. Ogievetsky and L. Poulain d’Andecy, “Induced representations and traces for chains of affine and cyclotomic Hecke algebras,” J. Geom. Phys. 87, 354 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Okounkov and A. Vershik, “A new approach to representation theory of symmetric groups II,” Selecta Math (New Ser.) 2, 581 (1996).

    Article  MATH  Google Scholar 

  18. R. M. Phatarfod, “On the matrix occurring in a linear search problem,” J. Appl. Probab. 28, 336 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Seneta, Non-Negative Matrices and Markov Chains (Springer, 2006).

    MATH  Google Scholar 

  20. N. R. Wallach, “Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals,” Representations of Lie Groups (Kyoto, Hiroshima, 1986), vol. 14, p. 123.

Download references

ACKNOWLEDGMENTS

The work of O. O. was supported by the Program of Competitive Growth of Kazan Federal University and by the grant RFBR 17-01-00585. The work of V. P. has been carried out thanks to the support of the A*MIDEX grant (ANR-11-IDEX-0001-02) funded by the French Government Investissements d’Avenir program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ogievetsky.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogievetsky, O., Petrova, V. Cyclotomic Shuffles. Phys. Part. Nuclei 49, 867–872 (2018). https://doi.org/10.1134/S1063779618050325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050325

Keywords

Navigation