Skip to main content
Log in

Description of Disclinations and Dislocations by the Chern–Simons Action for \(\mathbb{S}\mathbb{O}(3)\) Connection

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We obtained the exact solution of the Euler–Lagrange equations following from the Chern–Simons action for \(\mathbb{S}\mathbb{O}(3)\) connection with δ-type source. This solution is proved to describe straight linear disclination in the framework of geometric theory of defects. Torsion tensor components are calculated assuming the metric to be Euclidean. It shows that disclination can be followed by continuous distribution of dislocations with cylindrical symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. O. Katanaev and I. V. Volovich, “Theory of defects in solids and three-dimensional gravity,” Ann. Phys. 216, 1–28 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. M. O. Katanaev, “Geometric theory of defects,” Phys.-Usp. 48, 675–701 (2005); https://arxiv.org/abs/cond-mat/0407469.

  3. T. Dereli and A. Verçin, “A gauge model of amorphous solids containing defects. II. Chern–Simons free energy,” Philos. Mag. B 64, 509–513 (1991).

    Article  ADS  Google Scholar 

  4. S. S. Chern and J. Simons, “Characteristic forms and geometric invariants,” Ann. Math. 99, 48–69 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Zanelli, “Uses of Chern–Simons actions,” AIP Conf. Proc. 1031, 115 (2008).

    Article  ADS  MATH  Google Scholar 

  6. V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).

    MATH  Google Scholar 

  7. M. O. Katanaev, “Chern–Simons term in the geometric theory of defects,” Phys. Rev. D 96, 84054 (2017); https://doi.org/10.1103/PhysRevD.96.084054; https://arxiv.org/abs/1705.07888[gr-qc].

    Article  ADS  Google Scholar 

  8. G. A. Alekseev, “Collision of strong gravitational and electromagnetic waves in the expanding universe,” Phys. Rev. D 93, 061501 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Sb. Math. 206, 1410–1439 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. K. Gushchin, “lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation,” Sb. Math. 207, 1384–1409 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations,” Theor. Math. Phys. 185, 1557–1581 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. V. Zharinov, “Bäcklund transformations,” Theor. Math. Phys. 189, 1681–1692 (2016).

    Article  MATH  Google Scholar 

  13. Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions,” Russ. Math. Surv. 71, 1081–1134 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. M. O. Katanaev, “On homogeneous and isotropic universe,” Mod. Phys. Lett. A 30, 1550186 (2015); arXiv:1511.00991[gr-qc]; doi 10.1142/S021773231550186 210.1142/S0217732315501862

  15. M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity,” Proc. Steklov Inst. Math. 290, 138–142 (2015); arXiv:1602.06331; doi 10.1134/S0081543815060 12710.1134/S0081543815060127

  16. M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe,” Phys.-Usp. 59, 689–700 (2016); arXiv:1610.05628 [gr-qc]; doi 10.3367/UFNe. 2016.05.03780810.3367/UFNe.2016.05.037808

Download references

ACKNOWLEDGMENTS

The author is grateful to the Centro de Estudios Cientificos, Valdivia, Chile for hospitality and J. Zanelli for collaboration. This work is supported by the Russian Science Foundation under grant 14-50-00005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Katanaev.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katanaev, M.O. Description of Disclinations and Dislocations by the Chern–Simons Action for \(\mathbb{S}\mathbb{O}(3)\) Connection. Phys. Part. Nuclei 49, 890–893 (2018). https://doi.org/10.1134/S1063779618050234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050234

Keywords

Navigation