Skip to main content
Log in

SO(2,3) Noncommutative Gravity: Coupling with Matter Fields

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this paper, noncommutative gravity is treated as a gauge theory of the noncommutative \(SO{{(2,3)}_{ \star }}\) group, while the noncommutativity is canonical. The Seiberg–Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. In addition to pure gravity, we consider couplings to matter fields, in particular, to the Dirac and \(U(1)\) gauge field. The analysis can be extended to non Abelian gauge fields and scalar fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Dimitrijević Ćirić, B. Nikolić, and V. Radovanović, “Noncommutative \(SO{{(2,3)}_{ \star }}\) gravity: Noncommutativity as a source of curvature and torsion,” Phys. Rev. D 96, 064029–064045 (2017).

    Article  ADS  Google Scholar 

  2. D. Gocanin and V. Radovanović, “Dirac field and gravity in NC \(SO{{(2,3)}_{ \star }}\) model,” arXiv:1708.07437.

  3. N. Seiberg and E. Witten, “String theory and noncommutative geometry,” JHEP 09, 032–131 (1999), B. Jurčo, S. Schraml, P. Schupp, and J. Wess, “Construction of non-Abelian gauge theories on noncommutative spaces,” Eur. Phys. J. C 17, 521–526 (2000).

    Article  Google Scholar 

  4. M. Dimitrijević Ćirić, D. Gocanin, N. Konjik, and V. Radovanović (in press).

  5. K. S. Stelle and P. C. West, “Spontaneously broken de Sitter symmetry and the gravitational holonomy group,” Phys. Rev. D 21, 1466–1488 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Wilczek, “Riemann–Einstein structure from volume and gauge symmetry,” Phys. Rev. Lett. 80, 4851–4854 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. H. Chamseddine, “Deforming Einstein’s gravity,” Phys. Lett. B 504, 33–37 (2001), P. Aschieri and L. Castellani, “Noncommutative \(D = 4\) gravity coupled to fermions,” JHEP 0906, 86–105 (2009).

    Google Scholar 

  8. F. K. Manasse and C. W. Misner, “Fermi normal coordinates and some basic concepts in differential geometry,” J. Math. Phys. 4, 735–745 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P. Aschieri and L. Castellani, “Noncommutative gravity coupled to fermions: Second order expansion via Seiberg–Witten map,” JHEP 1207, 184–211 (2012);

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Aschieri and L. Castellani, “Noncommutative gauge fields coupled to noncommutative gravity,” Gen. Relat. Gravity 45, 581–598 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Dimitrijević Ćirić, D. Gočanin, N. Konjik or V. Radovanović.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrijević Ćirić, M., Gočanin, D., Konjik, N. et al. SO(2,3) Noncommutative Gravity: Coupling with Matter Fields. Phys. Part. Nuclei 49, 904–907 (2018). https://doi.org/10.1134/S1063779618050179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050179

Keywords:

Navigation