Skip to main content
Log in

Algebraic Structures in Extended Geometry

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Extended geometry is a unifying framework including exceptional field theory (XFT) and double field theory (DFT). It gives a geometric underpinning of the duality symmetries of M-theory. In this talk I give an overview of the surprisingly rich algebraic structures which naturally appear in the context of extended geometry. This includes Borcherds superalgebras, Cartan type superalgebras (tensor hierarchy algebras) and L algebras. This is the written version of a talk based mainly on [1–6], presented at SQS 2017, Dubna, Aug. 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Palmkvist, “Exceptional geometry and Borcherds superalgebras,” J. High Energy Phys. 1511, 032 (2015); arXiv:1507.08828.

  2. J. Palmkvist, “The tensor hierarchy algebra,” J. Math. Phys. 55, 011701 (2014); arXiv:1305.0018.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. Bossard, M. Cederwall, A. Kleinschmidt, J. Palmkvist, and H. Samtleben, “Generalised diffeomorphisms for E g,” Phys. Rev. D 96, 106022 (2017); arXiv:1708.08936.

  4. M. Cederwall and J. Palmkvist, “Extended geometries,” J. High Energy Phys. 182, 71 (2018); arXiv:1711.07694.

  5. L. Carbone, M. Cederwall, and J. Palmkvist, “Generators and relations for Lie superalgebras of Cartan type,” arXiv:1802.05767.

  6. M. Cederwall and J. Palmkvist, “L algebras for extended geometry from Borcherds superalgebras,” in preparation; arXiv:1804.04377.

  7. A. A. Tseytlin, “Duality symmetric closed string theory and interacting chiral scalars,” Nucl. Phys. B 350, 395 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  8. W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47, 5453 (1993); arXiv:hep-th/9302036.

    Article  ADS  MathSciNet  Google Scholar 

  9. W. Siegel, “Manifest duality in low-energy superstrings,” in Proceedings of the International Conference Strings93, Berkeley, 5993, p. 353; arXiv:hep-th/9308133.

  10. N. Hitchin, “Lectures on generalized geometry,” in Surveys in Differential Geometry, Vol. 16: Geometry of Special Holonomy and Related Topics (Surv. Differ. Geom. Int. Press, Somerville, MA, 2011), pp. 79–124; arXiv:1010.2526.

  11. C. M. Hull, “A geometry for non-geometric string backgrounds,” J. High Energy Phys. 0510, 065 (2005); arXiv:hep-th/0406102.

  12. C. M. Hull, “Doubled geometry and T-folds,” J. High Energy Phys. 0707, 080 (2007); arXiv:hep-th/0605149.

  13. C. Hull and B. Zwiebach, “Double field theory,” J. High Energy Phys. 0909, 99 (2009); arXiv:0904.4664.

    Article  ADS  MathSciNet  Google Scholar 

  14. O. Hohm, C. M. Hull, and B. Zwiebach, “Background independent action for double field theory,” J. High Energy Phys. 1007, 016 (2010); arXiv:1003.5027.

  15. O. Hohm, C. M. Hull, and B. Zwiebach, “Generalized metric formulation of double field theory,” J. High Energy Phys. 1008, 008 (2010); arXiv:1006.4823.

  16. O. Hohm and S. K. Kwak, “Frame-like geometry of double field theory,” J. Phys. A 44, 085404 (2011); arXiv:1011.4101.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. O. Hohm and S. K. Kwak, “N = 1 supersymmetric double field theory,” J. High Energy Phys. 1203, 080 (2012); arXiv:1111.7293.

  18. J. Jeon, K. Lee, and J.-H. Park, “Differential geometry with a projection: Application to double field theory,” J. High Energy Phys. 1104, 014 (2011); arXiv:1011.1324.

  19. I. Jeon, K. Lee, and J.-H. Park, “Stringy differential geometry, beyond Riemann,” Phys. Rev. D 84, 044022 (2011); arXiv:1105.6294.

    Article  ADS  Google Scholar 

  20. I. Jeon, K. Lee, and J.-H. Park, “Supersymmetric double field theory: stringy reformulation of supergravity,” Phys. Rev. D 85, 081501 (2012); arXiv:1112.0069.

    Article  ADS  Google Scholar 

  21. O. Hohm and B. Zwiebach, “Towards an invariant geometry of double field theory,” J. Math. Phys. 54, 032303 (2013); arXiv:1212.1736.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. O. Hohm, S. K. Kwak, and B. Zwiebach, “Double field theory of type II strings,” J. High Energy Phys. 1109, 013 (2011); arXiv:1107.0008.

  23. I. Jeon, K. Lee, J.-H. Park, and Y. Suh, “Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory,” Phys. Lett. B 723, 245 (2013); arXiv:1210.5048.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. I. Jeon, K. Lee, and J.-H. Park, “Ramond–Ramond cohomology and O(D, D) T-duality,” J. High Energy Phys. 1209, 079 (2012); arXiv:1206.3478.

  25. O. Hohm and B. Zwiebach, “Large gauge transformations in double field theory,” J. High Energy Phys. 02, 075 (2013); arXiv:1207.4198.

  26. J.-H. Park, “Comments on double field theory and diffeomorphisms,” J. High Energy Phys. 1306, 098 (2013); arXiv:1304.5946.

  27. D. S. Berman, M. Cederwall, and M. J. Perry, “Global aspects of double geometry,” J. High Energy Phys. 1409, 66 (2014); arXiv:1401.1311.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Cederwall, The geometry behind double geometry," J. High Energy Phys. 1409, 70 (2014); arXiv:1402.2513.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Cederwall, “T-duality and non-geometric solutions from double geometry,” Fortschr. Phys. 62, 942 (2014); arXiv:1409.4463.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Blumenhagen, F. Hassler, and D. Lüst, “Double field theory on group manifolds,” J. High Energy Phys. 1502, 001 (2015); arXiv:1410.6374.

  31. R. Blumenhagen, P. du Bosque, F. Hassler, and D. Lüst, “Generalized metric formulation of double field theory on group manifolds,” J. Hihg Energy Phys. 08, 056 (2015); arXiv:1502.02428.

  32. C. M. Hull, “Generalised geometry for M-theory,” J. High Energy Phys. 0707, 079 (2007); arXiv:hep-th/0701203.

  33. P. P. Pacheco and D. Waldram, “M-theory, exceptional generalised geometry and superpotentials,” J. High Energy Phys. 0809, 123 (2008); arXiv:0804.1362.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. C. Hillmann, “Generalized E 7(7) coset dynamics and D = 11 supergravity,” J. High Energy Phys. 0903, 135 (2009); arXiv:0901.1581.

    Article  ADS  MathSciNet  Google Scholar 

  35. D. S. Berman and M. J. Perry, “Generalised geometry and M-theory,” J. High Energy Phys. 1106, 074 (2011); arXiv:1008.1763.

  36. D. S. Berman, H. Godazgar, and M. J. Perry, “SO(5, 5) duality in M-theory and generalized geometry,” Phys. Lett. B 700, 65 (2011); arXiv:1103.5733.

    Article  ADS  MathSciNet  Google Scholar 

  37. D. S. Berman, H. Godazgar, M. Godazgar, and M. J. Perry, “The local symmetries of M-theory and their formulation in generalised geometry,” J. High Energy Phys. 1201, 012 (2012); arXiv:1110.3930.

  38. D. S. Berman, H. Godazgar, M. J. Perry, and P. West, “Duality invariant actions and generalised geometry,” J. High Energy Phys. 1202, 108 (2012); arXiv:1111.0459.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Coimbra, C. Strickland-Constable, and D. Waldram, “\({{E}_{{d(d)}}} \times {{\mathbb{R}}^{ + }}\) generalised geometry, connections and M theory,” J. High Energy Phys. 1402, 054 (2014); arXiv:1112.3989.

  40. A. Coimbra, C. Strickland-Constable, and D. Waldram, “Supergravity as generalised geometry II: \({{E}_{{d(d)}}} \times {{\mathbb{R}}^{ + }}\) and M theory,” J. High Energy Phys. 1403, 019 (2014); arXiv:1212.1586.

  41. D. S. Berman, M. Cederwall, A. Kleinschmidt, and D. C. Thompson, “The gauge structure of generalised diffeomorphisms,” J. High Energy Phys. 1301, 64 (2013); arXiv:1208.5884.

    Article  ADS  Google Scholar 

  42. J.-H. Park and Y. Suh, “U-geometry: SL(5),” J. High Energy Phys. 1406, 102 (2014); arXiv:1302.1652.

    ADS  Google Scholar 

  43. M. Cederwall, J. Edlund, and A. Karlsson, “Exceptional geometry and tensor fields,” J. High Energy Phys. 1307, 028 (2013); arXiv:1302.6736.

  44. M. Cederwall, “Non-gravitational exceptional supermultiplets,” J. High Energy Phys. 1307, 025 (2013); arXiv:1302.6737.

  45. O. Hohm and H. Samtleben, “U-duality covariant gravity,” J. High Energy Phys. 1309, 080 (2013); arXiv:1307.0509.

  46. O. Hohm and H. Samtleben, “Exceptional field theory. I. E 6(6) covariant form of M-theory and type IIB,” Phys. Rev. D 89, 066016 (2014); arXiv:1312.0614.

    Article  ADS  Google Scholar 

  47. O. Hohm and H. Samtleben, “Exceptional field theory. II. E 7(7),” Phys. Rev. D 89, 066017 (2014); arXiv:1312.4542.

    Article  ADS  Google Scholar 

  48. O. Hohm and H. Samtleben, “Exceptional field theory. III. E 8(8),” Phys. Rev. D 90, 066002 (2014); arXiv:1406.3348.

    Article  ADS  Google Scholar 

  49. M. Cederwall and J. A. Rosabal, “E 8 geometry,” J. High Energy Phys. 1507, 007 (2015); arXiv:1504.04843.

  50. M. Cederwall, “Twistors and supertwistors for exceptional field theory,” J. High Energy Phys. 1512, 123 (2015); arXiv:1510.02298.

  51. G. Bossard and A. Kleinschmidt, “Loops in exceptional field theory,” J. High Energy Phys. 1601, 164 (2016); arXiv:1510.07859.

  52. O. Hohm, E. T. Musaev, and H. Samtleben, “O(d + 1, d + 1) enhanced double field theory,” J. High Energy Phys. 1710, 086 (2017); arXiv:1707.06693.

  53. M. Cederwall, “Double supergeometry,” J. High Energy Phys. 1606, 155 (2016); arXiv:1603.04684.

  54. M. Cederwall and J. Palmkvist, “Superalgebras, constraints and partition functions,” J. High Energy Phys. 0815, 36 (2015); arXiv:1503.06215.

  55. O. Hohm and B. Zwiebach, “L algebras and field theory,” Fortschr. Phys. 65, 1700014 (2017); arXiv:1701.08824.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Cederwall.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cederwall, M. Algebraic Structures in Extended Geometry. Phys. Part. Nuclei 49, 873–878 (2018). https://doi.org/10.1134/S1063779618050155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618050155

Keywords

Navigation