Skip to main content
Log in

Higgs bosons in standard model extensions

  • The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions” April 12–15, 2016, Dubna, Russia
  • Session 2—Theory of Fundamental Interactions
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Several possibilities for extending the scalar sector of the Standard Model are considered. The conditions of calculation of Higgs bosons masses in the Next-to-Minimal Supersymmetric Standard Model are discussed. The probable limits on mass parameters of Higgs bosons are analyzed. The role of minimum conditions as a physical criterion in a model with an extended scalar sector is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012).

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30–61 (2012).

    Article  ADS  Google Scholar 

  3. J. Rosiek, “Complete set of Feynman rules for the minimal supersymmetric extension of the Standard Model,” Phys. Rev. D 41, 3464–3501 (1990).

    Article  ADS  Google Scholar 

  4. M. Maniatis, “The next-to-minimal supersymmetric extension of the Standard Model reviewed,” Int. J. Mod. Phys. A 25, 3505–3602 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. E. Kim and H. P. Nilles, “The μ-problem and the strong CP-problem,” Phys. Lett. B 138, 150–154 (1984).

    Article  ADS  Google Scholar 

  6. G. Aad et al. (ATLAS Collab.), “Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \(\sqrt s \) = 8 TeV using the ATLAS detector,” J. High Energy Phys. 2016 (3), 127 (2016).

    Article  Google Scholar 

  7. G. Aad et al. (ATLAS Collab.), “Search for lepton-flavour-violating H → μτ decays of the Higgs boson with the ATLAS detector,” J. High Energy Phys. 2015 (11), 211 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. V. Khachatryan et al. (CMS Collab.), “Search for lepton-flavour-violating decays of the Higgs boson,” Phys. Lett. B 749, 337–362 (2015).

    Article  ADS  Google Scholar 

  9. M. Aaboud et al. (ATLAS Collab.), “Search for resonances in diphoton events at \(\sqrt s \) = 13 TeV with the ATLAS detector,” J. High Energy Phys. 2016 (9), 001 (2016).

    Article  Google Scholar 

  10. V. Khachatryan et al. (CMS Collab.), “Search for resonant production of high-mass photon pairs in protonproton collisions at \(\sqrt s \) = 8 and 13 TeV,” Phys. Rev. Lett. 117, 051802 (2016).

    Article  ADS  Google Scholar 

  11. V. Khachatryan et al. (CMS Collab.), “Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp cols s s lisions at \(\sqrt s \) = 8 TeV,” J. High Energy Phys. 2015 (4), 124 (2015).

    Article  Google Scholar 

  12. G. Aad et al. (ATLAS Collab.), “Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at \(\sqrt s \) = 8 TeV with the ATLAS detector,” J. High Energy Phys. 2015 (4), 116 (2015).

    Article  Google Scholar 

  13. G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rep. 516, 1–102 (2012).

    Article  ADS  Google Scholar 

  14. J. F. Gunion, R. Vega, and J. Wudka, “Higgs triplets in the Standard Model,” Phys. Rev. D 42, 1673 (1990).

    Article  ADS  Google Scholar 

  15. J. R. Espinosa and M. Guiros, “Higgs triplets in the supersymmetric Standard Model,” Nucl. Phys. B 384, 113–146 (1992).

    Article  ADS  Google Scholar 

  16. K. Agashe, A. Azatov, A. Katz, and D. Kim, “Improving the tuning of the MSSM by adding triplets and singlet,” Phys. Rev. D 84, 115024 (2011).

    Article  ADS  Google Scholar 

  17. M. E. Carrington, “Effective potential at finite temperature in the Standard Model,” Phys. Rev. D 45, 2933 (1992).

    Article  ADS  Google Scholar 

  18. A. O. Borisov, M. V. Dolgopolov, M. N. Dubinin, and E. N. Rykova, “Temperature effective potential of the minimal supersymmetric Standard Model,” Izv. Samar. Nauchn. Tsentra RAN 10, 762–766 (2008).

    Google Scholar 

  19. M. V. Dolgopolov, S. P. Zavodov, and E. Yu. Petrova, “Bifurcation sets of the extended Higgs potential,” Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 4 (33), 173–183 (2013).

    Article  Google Scholar 

  20. M. N. Dubinin and E. Yu. Petrova, “High-Temperature Higgs potential of the two-doublet model in catastrophe theory,” Theor. Math. Phys. 184, 1170–1188 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. D. Sakharov, “Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe,” JETP Lett. 5, 24 (1967).

    ADS  Google Scholar 

  22. V. A. Kuzmin, V. A. Rubakov, and M. A. Shaposhnikov, “On the anomalous electroweak baryon-number non-conservation in the early universe,” Phys. Lett. B 155, 36–42 (1985).

    Article  ADS  Google Scholar 

  23. A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “Progress in electroweak baryogenesis,” Annu. Rev. Nucl. Part. Sci. 43, 27–70 (1993).

    Article  ADS  Google Scholar 

  24. M. E. Shaposhnikov, “Possible appearance of the baryon asymmetry of the universe in an electroweak theory,” JETP Lett. 44, 465–468 (1986).

    ADS  Google Scholar 

  25. M. V. Dolgopolov and E. N. Rykova, “Constraints on electroweak baryogenesis in models involving an extended Higgs sector,” Phys. At. Nucl. 72, 173–177 (2009).

    Article  Google Scholar 

  26. M. Carena, N. R. Shah, and C. E. M. Wagner, “Light dark matter and the electroweak phase transition in the NMSSM,” Phys. Rev. D 85, 036003 (2012).

    Article  ADS  Google Scholar 

  27. N.-E. Bomark, S. Moretti, S. Munir, and L. Roszkowski, “A light NMSSM pseudoscalar Higgs boson at the LHC redux,” J. High Energy Phys. 2015, 044 (2015). doi doi 10.1007/JHEP02(2015)044

    Article  Google Scholar 

  28. S. Heinemeyer and C. Schappacher, “Higgs decays into charginos and neutralinos in the complex MSSM: A full one-loop analysis,” Eur. Phys. J. C 75, 230 (2015).

    Article  ADS  Google Scholar 

  29. R. K. Barman, B. Bhattacherjee, A. Chakraborty, and A. Choudhury, “Study of MSSM heavy Higgs bosons decaying into charginos and neutralinos,” Phys. Rev. D 94, 075013 (2016).

    Article  ADS  Google Scholar 

  30. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “The MSSM Higgs sector with CP violation in the effective field theory approach: A compHEP-based model,” Phys. Part. Nucl. 36 (S2), 173–176 (2005).

    Google Scholar 

  31. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Higgs bosons in the two-doublet model involving CP violation,” Phys. At. Nucl. 68, 1851–1865 (2005).

    Article  Google Scholar 

  32. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “The supersymmetric model with CP violation. 3. CP violation in the Higgs sector,” Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser. 30 (4), 147–179 (2003).

    Google Scholar 

  33. E. N. Akhmetzyanova, M. V. Dolgopolov, and M. N. Dubinin, “Violation of CP invariance in the two-doublet Higgs sector of the MSSM,” Phys. Part. Nucl. 37, 677 (2006).

    Article  Google Scholar 

  34. E. N. Akhmetzyanova, I. V. Gorbacheva, M. V. Dolgopolov, and M. N. Dubinin, “The supersymmetric model with CP violation. 4. Mixing in kinetic terms, a light Higgs boson,” Vestn. Samar. Gos. Univ., Estestvennonauchn. Ser. 32 (2), 79–109 (2004).

    Google Scholar 

  35. T. V. Volkova, M. V. Dolgopolov, M. N. Dubinin, and E. N. Rykova, “Effective Higgs potential in the nonminimal supersymmetric Standard Model,” Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 2 (31), 233–242 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dolgopolov.

Additional information

Original Russian Text © A.V. Gurskaya, M.V. Dolgopolov, E.N. Rykova, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurskaya, A.V., Dolgopolov, M.V. & Rykova, E.N. Higgs bosons in standard model extensions. Phys. Part. Nuclei 48, 822–826 (2017). https://doi.org/10.1134/S1063779617050215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617050215

Navigation