Skip to main content
Log in

Ten years of CR physics with PAMELA

  • The International Session-Conference of SNP PSD RAS “Physics of Fundamental Interactions” April 12–15, 2016, Dubna, Russia
  • Plenary Session
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The satellite borne Pamela instrument is dedicated to the precise and high statistics study of CR fluxes on a four decades energy range. Pamela experiment is the last step of the “Russian-Italian Mission” (RIM) program established in 1992 between several Italian and Russian institutes and with the participation of Sweden and Germany. Designed as a cosmic ray observatory at 1 AU, it extensive program is made possible thanks to the outstanding performance of the instrument, the low energy threshold, the quasi-polar orbit and the 10 years duration of the observation. The physics program pays particular attention to the study of particles and antiparticles fluxes and includes search for dark matter, primordial antimatter, new matter in the Universe, study of cosmic-ray propagation, solar physics and solar modulation, and terrestrial magnetosphere. Very important is the discovery of the anomalous increase of the positron flux at energies higher that 50 GeV (the so called “Pamela anomaly”), and the abrupt spectral hardening of H and He, challenging the current paradigm of cosmic-ray acceleration and propagation in the Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NASA Cosmic Ray Program Working Group, “Cosmic Ray Program or the 1980’s”, NASA Report, August 1982. “The particle astrophysics program for 1985–1995”, NASA Report, October 1985.

    Google Scholar 

  2. M. A. Green, G. F. Smoot, R. L. Golden, et al., “Astromag: A superconducting particle astrophysics magnet facility for the space station”, IEEE Trans. Magnetics 23, 1240–1243 (1987).

    Article  ADS  Google Scholar 

  3. R. L. Golden et al., “Wizard: A proposal to measure the cosmic rays including antiprotons, positrons, nuclei and to conduct a search for primordial antimatter”, College Eng., Ed. by NMSU (1988).

    Google Scholar 

  4. P. Spillantini et al., Il Nuovo Cimento B 103, 625 (1989).

    Article  ADS  Google Scholar 

  5. E. A. Bogomolov, N. D. Lubyanaya, V. A. Romanov, et al., “A stratospheric magnetic spectrometer investigation of the singly charged component spectra and composition of the primary and secondary cosmic radiation”, ICRC (1979).

    Google Scholar 

  6. R. L. Golden, B. G. Mauger, S. Nunn, and S. Horan, “Energy dependence of the ratio in cosmic rays”, Astrophys. Lett. 24, 75–83 (1984).

    ADS  Google Scholar 

  7. P. Picozza, A. M. Galper, G. Castellini, et al., “PAMELA–A payload for antimatter matter exploration and light-nuclei astrophysics”, Astropart. Phys. 27, 296–315 (2007).

    Article  ADS  Google Scholar 

  8. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV”, Nature 458, 607–609 (2009).

    Article  ADS  Google Scholar 

  9. O. Adriani et al., “Cosmic-ray positron energy spectrum measured by PAMELA”, Phys. Rev. Lett. 111, 081102 (2013).

    Article  ADS  Google Scholar 

  10. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “PAMELA Results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy”, Phys. Rev. Lett. 105, 121101 (2010).

    Article  ADS  Google Scholar 

  11. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment”, JETP Lett. 96, 621–627 (2013).

    Article  ADS  Google Scholar 

  12. A. G. Mayorov, A. M. Galper, O. Adriani, et al., “Upper limit on the antihelium flux in primary cosmic rays”, JETP Lett. 93, 628–631 (2011).

    Article  ADS  Google Scholar 

  13. O. Adriani et al., “PAMELA measurements of cosmicray proton and helium spectra”, Science 332, 69–72 (2011).

    Article  ADS  Google Scholar 

  14. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Measurements of cosmic-ray proton and helium spectra with the PAMELA calorimeter”, Adv. Space Res. 51, 219–226 (2013).

    Article  ADS  Google Scholar 

  15. A. V. Karelin, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “New measurements of the energy spectra of high-energy cosmic-ray protons and helium nuclei with the calorimeter in the PAMELA experiment”, J. Exp. Theor. Phys. 119, 448–452 (2014).

    Article  Google Scholar 

  16. M. Boezio, P. Carlson, T. Francke, et al., “The cosmicray electron flux measured by the PAMELA experiment between 1 and 625 GeV”, Phys. Rev. Lett. 106, 201101 (2011).

    Article  ADS  Google Scholar 

  17. N. De Simone et al., Astrophys. Space Sci. Trans. 7, 425 (2011).

    Article  ADS  Google Scholar 

  18. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Time dependence of the proton flux measured by PAMELA during the July 2006–December 2009 solar minimum”, Astrophys. J. 765, 91 (2013).

    Article  ADS  Google Scholar 

  19. V. V. Mikhailov, O. Adriani, G. A. Bazilevskaya, G. C. Barbarino, et al., “Spectra of primary cosmic-ray positrons and electrons in the PAMELA experiment”, Bull. Russ. Acad. Sci. Phys. 77, 1309–1311 (2013).

    Article  Google Scholar 

  20. O. Adriani et al., “Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the PAMELA experiment”, Astrophys. J. 770, 2 (2013).

    Article  ADS  Google Scholar 

  21. O. Adriani et al., “Cosmic-ray positron energy spectrum measured by PAMELA”, Phys. Rev. Lett. 111, 081102 (2013).

    Article  ADS  Google Scholar 

  22. V. Formato, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Measurement of hydrogen and helium isotopes flux in galactic cosmic rays with the PAMELA experiment”, Nucl. Instrum. Meth. A 742, 273–275 (2014).

    Article  ADS  Google Scholar 

  23. M. Boezio and E. Mocchiutti, “Chemical composition of galactic cosmic rays with space experiments”, Astroparticle Phys. 39, 95–108 (2012).

    Article  ADS  Google Scholar 

  24. S. A. Koldobskiy, V. Formato, O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Measurement of galactic cosmic-ray deuteron spectrum in the PAMELA experiment”, Bull. Russ. Acad. Sci. Phys. 77, 606–608 (2013).

    Article  Google Scholar 

  25. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment”, Astrophys. J. 791, 93 (2014).

    Article  ADS  Google Scholar 

  26. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “Observations of the December 13 and 14, 2006, solar particle events in the 80 MeV/n–3 GeV/n range from space with PAMELA detector”, Astrophys. J. 742, 102 (2011).

    Article  ADS  Google Scholar 

  27. G. A. Bazilevskaya, A. G. Mayorov, V. V. Malakhov, V. V. Mikhailov, et al., “Solar energetic particle events in 2006–2012 in the PAMELA experiment data”, J. Phys. Conf. Ser. 409, 012188 (2013).

    Article  Google Scholar 

  28. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, et al., “The discovery of geomagnetically trapped cosmic ray antiprotons”, Astrophys. J. 737, L29 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galper.

Additional information

on behalf of PAMELA collaboration

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galper, A., Spillantini, P. Ten years of CR physics with PAMELA. Phys. Part. Nuclei 48, 710–719 (2017). https://doi.org/10.1134/S1063779617050185

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617050185

Navigation