Skip to main content
Log in

Exotic fermions in Kadyshevsky’s theory and the possibility to detect them

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

As it is known, the principal research interest of V.G. Kadyshevsky was the development of a geometric approach to quantum field theory with a constraint imposed on the mass spectrum of elementary particles. Non-Hermitian operators arising in this case seemed to be a major obstacle to the development of a consistent theory. These issues have been resolved recently, and the introduction of the pseudo-Hermitian algebraic approach to the construction of quantum theory was a major advance in this physical research. The central point of such theories is the construction of PT-symmetric non-Hermitian Hamiltonians with real eigenvalues. It is important to note that both purely theoretical and experimental studies (e.g., in non-Hermitian optics) are found among the many published papers on this subject. Therefore, we believe that the development of pseudo-Hermitian relativistic quantum theory with a maximal mass may provide favorable opportunities to discuss the possible experimental verification of theoretical results obtained in this field. Kadyshevsky himself regarded the hypothesis of existence of new particles, which he called exotic fermions, as an important prediction of his theory. The possibility of discovery of exotic neutrinos in precision experiments on the determination of the neutrino mass is discussed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kadyshevsky, “Quantum field theory and Markov’s maximon,” Preprint OIYaI R2-84-753 (Joint Institute for Nuclear Research, Dubna, 1984).

    Google Scholar 

  2. V. G. Kadyshevsky, “Fundamental length hypothesis and new concept of gauge vector field,” Nucl. Phys. B 141, 477 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. V. G. Kadyshevsky, “Toward a more profound theory of electromagnetic interactions,” Preprint FERMILAB-Pub-78-070-THY (Fermi National Accelerator Laboratory, Batavia, 1978)

    Google Scholar 

  4. V. G. Kadyshevsky, “A new approach to the theory of electromagnetic interactions,” Fiz. Elem. Chastits At. Yadra 11, 5 (1980).

    MathSciNet  Google Scholar 

  5. M. A. Markov, “Can the gravitational field prove essential for the theory of elementary particles?” Prog. Theor. Phys. Suppl. E65, 85 (1965)

  6. M. A. Markov, “Elementary particles of maximally large masses (quarks and maximons),” Sov. Phys. JETP 24, 584 (1967).

    ADS  Google Scholar 

  7. M. A. Markov, “Maximon-type scenario of the universe (big bang, small bang, micro bang),” Preprint IYaI P-0207 (Institute for Nuclear Research, Moscow, 1981)

    Google Scholar 

  8. M. A. Markov, “On the maximon and the concept of elementary particle”, Preprint IYaI P-0208 (Institute for Nuclear Research, Moscow, 1981)

    Google Scholar 

  9. M. A. Markov, “The maximon and minimon in light of a possible formulation of the concept of an “elementary particle”, JETP Lett. 45, 141 (1987)

    ADS  Google Scholar 

  10. M. A. Markov and V. F. Mukhanov, “On the problems of a very early universe,” Phys. Lett. A 104, 200 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. N. Rodionov, “Non-Hermitian PT-symmetric Dirac-Pauli Hamiltonians with real energy eigenvalues in the magnetic field,” Int. J. Theor. Phys. 54, 3907 (2015). doi 10.1007/s10773-014-2410-4065

    Article  MATH  Google Scholar 

  12. V. N. Rodionov, “Exact solutions for non-Hermitian Dirac-Pauli equation in an intensive magnetic field,” Phys. Scr. 90, 045302 (2015).

    Article  ADS  Google Scholar 

  13. M. Sigamani (CMS Collab.), “Exotic physics,” arXiv:1603.08434 [hep-ex].

  14. N. Arkani-Hamed, R. T. D’Agnolo, M. Low, and D. Pinner, “Unification and new particles at the LHC,” arXiv:1608.01675 [hep-ph].

  15. M. G. Aartsen, K. Abraham, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. Ahrens, D. Altmann, T. Anderson, I. Ansseau, M. Archinger, C. Arguelles, T. C. Arlen, J. Auffenberg, X. Bai, et al., “The IceCube neutrino observatory - contributions to ICRC 2015 part IV: Searches for dark matter and exotic particles,” arXiv:1510.05226 [astro-ph.HE].

  16. V. N. Rodionov, “Towards the detecting of pseudo- Hermitian anomalies for negative square masses neutrinos in intensive magnetic fields,” arXiv:1603.08425 [physics.gen-ph].

  17. R. A. Battye and A. Moss, “Evidence for massive neutrinos from cosmic microwave background and lensing observations,” Phys. Rev. Lett. 112, 051303 (2014). https://arxiv.org/pdf/1308.5870v2.pdf.

    Article  ADS  Google Scholar 

  18. D. Lai, “Physics in very strong magnetic fields. Introduction and overview,” Space Sci. Rev. 191, 13 (2015). https://arxiv.org/pdf/1411.7995v1.pdf.

    Article  ADS  Google Scholar 

  19. M. G. Makris and P. Lambropoulos, “Quantum Zeno effect by indirect measurement: The effect of the detector,” Phys. Rev. A 70, 044101 (2004). https://arxiv.org/pdf/quant-ph/0406191.pdf.

    Article  ADS  Google Scholar 

  20. P. Lambropoulos, L. A. A. Nikolopoulos, and M. G. Makris, “Signatures of direct double ionization under XUV radiation,” Phys. Rev. A 72, 013410 (2005). https://arxiv.org/pdf/physics/0503195v1.pdf.

    Article  ADS  Google Scholar 

  21. M. Zanolin, S. Vitale, and N. Makris, “Application of asymptotic expansions for maximum likelihood estimators errors to gravitational waves from binary mergers: The single interferometer case,” Phys. Rev. D 81, 124048 (2010). https://arxiv.org/pdf/0912.0065v4.

    Article  ADS  Google Scholar 

  22. V. G. Kadyshevsky and M. D. Mateev, “Local gauge invariant QED with fundamental length,” Phys. Lett. B 106, 139 (1981).

    Article  ADS  Google Scholar 

  23. V. G. Kadyshevsky and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. I. The scalar model,” Nuovo Cimento A 87, 324 (1985).

    Article  ADS  Google Scholar 

  24. M. V. Chizhov, A. D. Donkov, R. M. Ibadov, V. G. Kadyshevsky, and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. II. Gauge vector fields,” Nuovo Cimento A 87, 350 (1985).

    Article  ADS  Google Scholar 

  25. M. V. Chizhov, A. D. Donkov, R. M. Ibadov, V. G. Kadyshevsky, and M. D. Mateev, “Quantum field theory and a new universal high-energy scale. III. Dirac fields,” Nuovo Cimento A 87, 373 (1985).

    Article  ADS  Google Scholar 

  26. V. G. Kadyshevsky, “On the finiteness of the elementaryparticle mass spectrum,” Phys. Part. Nucl. 29, 227 (1998).

    Article  Google Scholar 

  27. V. G. Kadyshevsky and D. V. Fursaev, “Left-Right components of bosonic field and electroweak theory,” JINR Rapid Commun., No. 6, 5 (1992).

    Google Scholar 

  28. R. M. Ibadov and V. G. Kadyshevsky, “On supersymmetry transformations in field theory with fundamental mass,” Preprint OIYaI R2-86-835 (Joint Institute for Nuclear Research, Dubna, 1986).

    Google Scholar 

  29. V. G. Kadyshevsky and D. V. Fursaev, “Chiral fermionic fields at high energies,” Sov. Phys. Dokl. 34, 534 (1989).

    ADS  Google Scholar 

  30. V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, “Towards a maximal mass model,” arXiv:0708.4205 [hep-ph].

  31. V. G. Kadyshevsky and V. N. Rodionov, “Polarization of electron-positron vacuum by strong magnetic fields the theory with fundamental mass,” Phys. Part. Nucl. 36 (7), 74 (2005).

    Google Scholar 

  32. V. G. Kadyshevsky, M. D. Mateev, V. N. Rodionov, and A. S. Sorin, “On the geometric approach to the formulation of the standard model,” Dokl. Phys. 51, 287 (2006). https://arxiv.org/pdf/hep-ph/0512332v1.

    Article  ADS  Google Scholar 

  33. T. D. Newton and E. P. Wigner, “Localized states for elementary systems,” Rev. Mod. Phys. 21, 400 (1949).

    Article  ADS  MATH  Google Scholar 

  34. W. Heisenberg, “Zur Teorie der “Schauer” der Höhenstrahlung,” Z. Phys. 101, 533 (1936).

    Article  ADS  MATH  Google Scholar 

  35. M. A. Markov, Hyperons and K Mesons (GIFML, Moscow, 1958) [in Russian].

    Google Scholar 

  36. Yu. A. Gol’fand, “On the introduction of an “elementary length” in the relativistic theory of elementary particles,” Sov. Phys. JETP 10, 356 (1960).

    MathSciNet  Google Scholar 

  37. V. G. Kadyshevskii, “On the theory of quantization of space-time,” Sov. Phys. JETP 14, 1340 (1962).

    MathSciNet  Google Scholar 

  38. V. G. Kadyshevsky, “On the theory of discrete spacetime,” Dokl. Akad. Nauk SSSR 136, 70 (1961).

    MathSciNet  Google Scholar 

  39. D. A. Kirzhnits, “Nonlocal quantum field theory,” Sov. Phys. Usp. 9, 692 (1967).

    Article  ADS  Google Scholar 

  40. D. I. Blokhintsev, Space and Time in the Microworld (Nauka, Moscow, 1970) [in Russian].

    MATH  Google Scholar 

  41. I. E. Tamm, Collection of Scientific Works (Nauka, Moscow, 1975), Vol. 2 [in Russian].

    Google Scholar 

  42. G. V. Efimov, Nonlocal Interactions of Quantized Fields (Nauka, Moscow, 1977) [in Russian].

  43. K. Osterwalder and R. Schrader, “Feynman-Kac formula for Euclidean Fermi and boson fields,” Phys. Rev. Lett. 29, 1423 (1972)

    Article  ADS  Google Scholar 

  44. K. Osterwalder and R. Schrader, “Euclidean Fermi fields and a Feynman-Kac formula for boson-fermion models,” Helv. Phys. Acta. 46, 277 (1973)

    MathSciNet  Google Scholar 

  45. K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s functions,” Commun. Math. Phys. 31, 83 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s functions II,” Commun. Math. Phys. 42, 281 (1975).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. V. P. Neznamov, “The Dirac equation in the model with a maximal mass,” arXiv:1002.1403 [physics.genph]

  48. V. P. Neznamov, “Electron self-energy in pseudo- Hermitian quantum electrodynamics with a maximal mass M,” Int. J. Geom. Methods Mod. Phys. 8, 1007 (2011). https://arxiv.org/pdf/1010.4042v1.

    Article  MathSciNet  MATH  Google Scholar 

  49. P. A. M. Dirac, “The relativistic electron wave equation”, Preprint KFKI-1977-62 (Central Research Institute for Physics, Budapest, 1977).

  50. C. M. Bender and S. Boettcher, “Real spectra in non- Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett. 80, 5243 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-Symmetric quantum mechanics,” J. Math. Phys. 40, 2210 (1999).

    ADS  Google Scholar 

  52. A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 7, 1191 (2010). https://arxiv.org/pdf/0810.5643v4.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Znojil, “Non-Hermitian Heisenberg representation,” Phys. Lett. A 379, 2013 (2015). https://arxiv.org/pdf/1505.01036v1.

    Article  ADS  MathSciNet  Google Scholar 

  54. A. Mostafazadeh, “Physics of spectral singularities,” arXiv:1412.0454 [quant-ph].

  55. P. Ambichl, K. G. Makris, Li Ge, Y. Chong, A. D. Stone, and S. Rotter, “Breaking of PT-symmetry in bounded and unbounded scattering systems,” Phys. Rev. X 3, 041030 (2013). https://arxiv.org/pdf/1307.0149v2.

    Google Scholar 

  56. S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, Li Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, “Scalable numerical approach for the steady-state ab initio laser theory,” Phys. Rev. A 90, 023816 (2014). https://arxiv.org/pdf/1312.2488v2.

    Article  ADS  Google Scholar 

  57. A. Mostafazadeh, “A dynamical formulation of onedimensional scattering theory and its applications in optics,” Ann. Phys. (NY) 341, 77 (2014). https://arxiv.org/pdf/1310.0592v2.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. K. G. Makris, Li Ge, and H. E. Tureci, “Anomalous transient amplification of waves in non-normal photonic media,” arXiv:1410.4626 [physics.optics].

  59. K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, and S. Rotter, “Constant-intensity waves and their modulation instability in non-Hermitian potentials,” Nat. Commun. 6, 7257 (2015). https://arxiv.org/pdf/1503.08986v1.

    Article  ADS  Google Scholar 

  60. M. Znojil, “Fundamental length in quantum theories with PT-symmetric Hamiltonians,” Phys. Rev. D 80, 045022 (2009). https://arxiv.org/pdf/0907.2677v1.

    Article  ADS  MathSciNet  Google Scholar 

  61. M. Znojil, “Fundamental length in quantum theories with PT-symmetric Hamiltonians II: The case of quantum graphs,” Phys. Rev. D 80, 105004 (2009). https://arxiv.org/pdf/0910.2560v1.

    Article  ADS  Google Scholar 

  62. A. Khare and B. P. Mandal, “A PT-invariant potential with complex QES eigenvalues,” Phys. Lett. A 272, 53 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. C. M. Bender, D. C. Brody, J. Chen, H. F. Jones, K. A. Milton, and M. C. Ogilvie, “Equivalence of a complex PT-symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly,” Phys. Rev. D 74, 025016 (2006).

    Article  ADS  Google Scholar 

  64. C. M. Bender, D. C. Brody, and H. F. Jones, “Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 70, 025001 (2004), “Erratum: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction,” Phys. Rev. D 71, 049901 (2005).

    Article  ADS  Google Scholar 

  65. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947 (2007). https://arxiv.org/pdf/hep-th/0703096v1.

    Article  ADS  MathSciNet  Google Scholar 

  66. C. M. Bender, H. F. Jones, and R. J. Rivers, “Dual -symmetric quantum field theories,” Phys. Lett. B 625, 333 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. A. Mostafazadeh and A. Batal, “Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics,” J. Phys. A: Math. Theor. 37, 11645 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. A. Mostafazadeh, “Exact PT-symmetry is equivalent to hermiticity,” J. Phys. A: Math. Theor. 36, 7081 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. A. Mostafazadeh, “Hilbert space structures on the solution space of Klein-Gordon type evolution equations,” Classical Quantum Gravity 20, 155 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. A. Mostafazadeh, “A physical realization of the generalized PT-, C-, and CPT-symmetries and the position operator for Klein–Gordon fields,” Int. J. Mod. Phys. A 21, 2553 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. F. Zamani and A. Mostafazadeh, “Quantum mechanics of Proca fields,” J. Math. Phys. 50, 052302 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. V. N. Rodionov, “PT-Symmetric pseudo-Hermitian relativistic quantum mechanics with a maximal mass,” arXiv:1207.5463 [math-ph].

  73. V. N. Rodionov, “Non-Hermitian PT-symmetric quantum mechanics of relativistic particles with the restriction of mass,” arXiv:1303.7053 [quant-ph].

  74. V. N. Rodionov, “On limitation of mass spectrum in non-Hermitian PT-symmetric models with the ?5- dependent mass term,” arXiv:1309.0231 [hep-th].

  75. V. N. Rodionov, “Non-Hermitian PT-symmetric relativistic quantum mechanics with a maximal mass in an external magnetic field,” arXiv:1404.0503 [hep-th].

  76. V. N. Rodionov, “Exact solutions for non-Hermitian Dirac-Pauli equation in an intensive magnetic field,” arXiv:1406.0383 [hep-th].

  77. V. N. Rodionov, “Non-Hermitian PT-symmetric Dirac-Pauli Hamiltonians with real energy eigenvalues in the magnetic field,” arXiv:1409.5412 [hep-ph].

  78. V. N. Rodionov and G. A. Kravtsova, “The algebraic and geometric approaches to PT-symmetric non-Hermitian relativistic quantum mechanics with maximal mass,” Moscow Univ. Phys. Bull. 69, 223 (2014).

    Article  ADS  Google Scholar 

  79. V. N. Rodionov and G. A. Kravtsova, “Developing a non-Hermitian algebraic theory with the ?5-extension of mass,” Theor. Math. Phys. 182, 100 (2015).

    Article  MATH  Google Scholar 

  80. J. Schwinger, “On the Green’s functions of quantized Fields. I,” Proc. Natl. Acad. Sci. U. S. A. 37, 452 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. J. Schwinger, “On the Green’s functions of quantized Fields. II,” Proc. Natl. Acad. Sci. U. S. A. 37, 455 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, The Interaction of Charged Particles with an Intense Electromagnetic Field (Mosk. Gos. Univ., Moscow, 1982) [in Russian].

    Google Scholar 

  83. I. M. Ternov, V. G. Bagrov, and V. Ch. Zhukovskii, “Synchrotron radiation of an electron with a vacuum magnetic moment,” Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 7, 30 (1966).

    Google Scholar 

  84. B. Lee and R. Shrock, “Natural suppression of symmetry violation in gauge theories: Muon- and electronlepton-number nonconservation,” Phys. Rev. D 16, 1444 (1977).

    Article  ADS  Google Scholar 

  85. K. Fujikawa and R. Shrock, “Magnetic moment of a massive neutrino and neutrino-spin rotation,” Phys. Rev. Lett. 45, 963 (1980).

    Article  ADS  Google Scholar 

  86. K.-E. Bergkvist, “On some atomic effects in the tritium ß-spectrum,” Phys. Scr. 4, 23 (1971).

    Article  ADS  Google Scholar 

  87. K.-E. Bergkvist, “A high-luminosity, high-resolution study of the end-point behaviour of the tritium ß-spectrum (I). Basic experimental procedure and analysis with regard to neutrino mass and neutrino degeneracy,” Nucl. Phys. B 39, 317 (1972).

    Article  ADS  Google Scholar 

  88. R. G. H. Robertson, T. J. Bowles, G. J. Stephenson, D. L. Wark, and J. F. Wilkerson, “Limit on ve maßs from observation of the ß decay of molecular tritium,” Phys. Rev. Lett. 67, 957 (1991).

    Article  ADS  Google Scholar 

  89. E. Holzschuh, M. Fritschi, and W. Kündig, “Measurement of the electron neutrino maßs from tritium ß-decay,” Phys. Lett. B 287, 381 (1992).

    Article  ADS  Google Scholar 

  90. J. Bonn, B. Bornschein, L. Bornschein, L. Fickinger, B. Flatt, A. Kovalik, Ch. Kraus, E. W. Otten, J. P. Schall, Th. Thümmler, H. Ulrich, and Ch. Weinheimer, “Results from the Mainz neutrino mass experiment,” Phys. At. Nucl. 65, 2171 (2002).

    Article  Google Scholar 

  91. V. M. Lobashev, “The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of study it in the project KATRIN,” Nucl. Phys. A 719, C153 (2003).

    Article  ADS  Google Scholar 

  92. V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Likhovid, V. M. Lobashev, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Upper limit on the electron antineutrino mass from the Troitsk experiment,” Phys. Rev. D 84, 112003 (2011).

    Article  ADS  Google Scholar 

  93. V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, N. A. Likhovid, V. M. Lobashev, A. A. Nozik, V. S. Pantuev, V. I. Parfenov, A. K. Skasyrskaya, F. V. Tkachov, and S. V. Zadorozhny, “Measurement of the electron antineutrino mass in tritium beta decay in the Troitsk nu-mass experiment,” Phys. At. Nucl. 75, 464 (2012).

    Article  Google Scholar 

  94. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and Z. Shun, “Electromagnetic neutrinos in laboratory experiments and astrophysics,” Ann. Phys. (Berlin, Ger.) 528, 198 (2016). https://arxiv.org/pdf/1506.05387v2.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Rodionov.

Additional information

Original Russian Text © V.N. Rodionov, 2017, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2017, Vol. 48, No. 2.

In memory of Vladimir Georgievich Kadyshevsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, V.N. Exotic fermions in Kadyshevsky’s theory and the possibility to detect them. Phys. Part. Nuclei 48, 319–331 (2017). https://doi.org/10.1134/S106377961702006X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377961702006X

Navigation