Skip to main content
Log in

Action principles for hydro- and thermo-dynamics

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A Hamiltonian formulation of hydrodynamics is well known for the case of purely irrotational flows and it now exists in a more general case as well. The minimal extension of the action principle is obtained from two axioms: 1. That the number of independent degrees of freedom be 4, as in standard hydrodynamics. 2. That the equation of continuity must be one of the Euler-Lagrange equations, and that it allows for vorticity. Applications include: 1. Couette flow with a new criterion for the breakdown of laminar motion. 2. A rotating source for Einstein’s equation that respects the Bianchi identity. 3. A new approach to the electromagnetism of fluids. 4. A rigorous virial theorem for fluids. 5. A critique of the current state of the theory of atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Andereck, S. S. Liu, and H. L. Swinney, “Flow regimes in a circular Couette system with independently rotating cylinders”, J. Fluid Mech. 164, 155–183 (1986).

    Article  ADS  Google Scholar 

  2. A. L. Fetter and J. D. Walecka, Theoretical Mechanics of Particles and Continua (New York: MacGraw-Hill, 1980).

    MATH  Google Scholar 

  3. G. K. Batchelor, “On the spontaneous magnetic field in a conducting liquid in turbulent motion”, Proc. R. Soc. A, 405 (1949).

    Google Scholar 

  4. A. Einstein, “On the electrodynamics of moving bodies”, Ann. Phys. (1905).

    Google Scholar 

  5. A. Einstein and J. Laub, “Uber die electromagnetischen Grundgleichungen für bewegte Körper”, Ann. Phys. 26, 532–540 (1908a).

    Article  MATH  Google Scholar 

  6. A. Einstein and J. Laub, “Uber die im electromagnetischen Felde af ruhende Körper ausgebten ponderomotorischen Kräfte”, Ann. Phys. 14, 327–336 (1908b).

    Article  MATH  Google Scholar 

  7. A. L. Fetter, “Rotating trapped Bose-Einstein condensates”, Rev. Mod. Phys. 81, 647–691 (2009).

    Article  ADS  Google Scholar 

  8. R. P. Feynman, “Atomic theory of the two-fluid model of liquid helium”, Phys. Rev. 94, 262–277 (1954).

    Article  ADS  MATH  Google Scholar 

  9. C. Fronsdal, “Ideal stars and general relativity”, Gen. Rel. Grav. 39, 1971–2000 (2007a).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Fronsdal, Action Principle for Hydrodynamics and Thermodynamics including general, rotational flows, arxiv1405.7138v3[physics.gen-ph](v3 19 June 2015).

  11. J. W. Gibbs, “On the equilibrium of heterogeneous substances”, Trans. Conn. Acad. 3, 108–524 (1878).

    MATH  Google Scholar 

  12. H. E. Hall and W. F. Vinen, “The Rotation of Liquid Helium II. The Theory of Mutual Friction in Uniformly Rotating Helium II”, Proc. R. Soc. Lond. A, 238 (1956). doi 10.1098/rspa.1956.0215

    Google Scholar 

  13. M. Kalb and P. Ramond, Phys. Rev. D 9, 2273 (1974).

    Article  ADS  Google Scholar 

  14. H. A. Lorentz, “La Théorie” electromagnétique de Maxwell et son application aux corps mouvants”, Arch. Néerlandaises des Sci. Exactes et Naturelles 25, 363–552 (1892).

    MATH  Google Scholar 

  15. H. Lorentz, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern (E.J. Brill, Leiden, 1895).

    MATH  Google Scholar 

  16. H. A. Lorentz, Lectures on Theoretical Physics (Macmillan, London, 1927–1931), Vol. 3, p. 303.

    Google Scholar 

  17. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Westview Press, 2000).

    Google Scholar 

  18. L. D. Landau and E. M. Lifschitz, Dokl. Akad. Nauk 100, 669 (1955).

    Google Scholar 

  19. L. D. Landau and E. M. Lifschitz, Statistical Physics (Pergamon Press, 1958).

    Google Scholar 

  20. H. Martin. doi1115/IHTC 14-22023

  21. J. C. Maxwell, M. Rukeyser, Willard Gibbs (OX BOW PReSS, Woodbridge, Conn., 1942), p. 199.

    Google Scholar 

  22. H. Minkowski, Gött. Nachr., 45 (1908).

    Google Scholar 

  23. V. I. Ogievetskij and I. V. Polubarinov, “Minimal interactions between spin 0 and spin 1 fields”, J. Exptl. Theor. Phys. (USSR) 46, 1048–1055 (1964).

    Google Scholar 

  24. G. N. Pellegrini and A. R. Swift, “Maxwell’s equations in a rotating medium: Is there a problem?”, Am. J. Phys. 63, 694–705 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Poincaré, Thermodynamique (Gauthier-Villars, Paris, 1908).

    MATH  Google Scholar 

  26. R. L. Scott and P. H. van Konynenburg, Roy. Soc. Lond. A 298, 495–540 (1980).

    Article  ADS  Google Scholar 

  27. S. Putterman, Superfluid Hydrodynamics (North-holland, 1974).

    Google Scholar 

  28. R. C. Tolman, “The electromotive force produced in solutions by centrifugal action”, M.I.T. Res. Lab. Contributions, No. 59 (1910).

    MATH  Google Scholar 

  29. R. C. Tolman, Proc. Am. Acad. 46, 284 (1910).

    Article  Google Scholar 

  30. R. C. Tolman and T. D. Stewart, “The electromotive force produced by acceleration of metals”, Phys. Rev. 8, 97–116 (1916).

    Article  ADS  Google Scholar 

  31. R. C. Tolman, “Osgerby and Stewart”, J. Am. Chem. Soc. 36, 466 (1914).

    Article  Google Scholar 

  32. M. A. Virasoro, “Variational principle for two-dimensional incompressible hydro-dynamics and quasiostrophic flows”, Phys. Rev. Lett. 47, 1181–1183 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. A. Wilson, “On the electric effect of rotating a dielectric in a magnetic field”, Phil. Trans. A 204 (1904).

  34. M. Wilson and H. A. Wilson, “On the electric effect of rotating a magnetic insulator in a magnetic field”, Proc. R. Soc. Lond., Ser. A 89, 99–106 (1913).

    Article  ADS  Google Scholar 

  35. A. Zheltukhin, On Brane Symmetries, arXiv.1409.6655.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fronsdal.

Additional information

For Special Issue Dedicated to the Memory of V.G. Kadyshevsky

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fronsdal, C. Action principles for hydro- and thermo-dynamics. Phys. Part. Nuclei 48, 211–226 (2017). https://doi.org/10.1134/S1063779617020046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617020046

Navigation