Physics of Particles and Nuclei

, Volume 48, Issue 1, pp 84–89 | Cite as

Description of resonant states in the shell model

  • I. A. Mazur
  • A. M. Shirokov
  • A. I. Mazur
  • J. P. Vary
XIV International Seminar on Electromagnetic Interactions of Nuclei “EMIN-2015” Moscow, October 5–8, 2015


A technique for describing scattering states within the nuclear shell model is proposed. This technique is applied to scattering of nucleons by particles based on ab initio No-Core Shell Model calculations of 5He and 5Li nuclei with JISP16 NN interaction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. D. Efros, W. Leidemann, G. Orlandini, and N. Barnea, “The Lorentz integral transform (LIT) method and its applications to perturbation-induced reactions”, J. Phys. G 34, R459 (2007).Google Scholar
  2. 2.
    W. Leidemann and G. Orlandini, “Modern ab initio approaches and applications in few-nucleon physics with”, Prog. Part. Nucl. Phys. 68, 158 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    I. Stetcu, S. Quaglioni, S. Bacca, B. R. Barrett, C. W. Johnson, P. Navrátil, N. Barnea, W. Leidemann, and G. Orlandini, “Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system”, Nucl. Phys. A 785, 307 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Volya, “From nuclear structure to reactions with a unified continuum shell model approach”, J. Phys. Conf. Ser. 49, 67 (2006).CrossRefGoogle Scholar
  5. 5.
    K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson, and G. M. Hale, “Quantum Monte Carlo calculations of neutron- scattering”, Phys. Rev. Lett. 99, 022502 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    G. Papadimitriou, J. Rotureau, N. Michel, M. Płoszajczak, and B. R. Barrett, “Ab initio no-core Gamow shell model calculations with realistic interactions”, Phys. Rev. C 88, 044318 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, “Recent developments in no-core shell-model calculations”, J. Phys. G 36, 083101 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    B. R. Barrett, P. Navrátil, and J. P. Vary, “Ab initio no core shell model”, Prog. Part. Nucl. Phys. 69, 131 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    H. A. Yamany and L. Fishman, “matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering”, J. Math. Phys. 16, 410 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    G. F. Filippov and I. P. Okhrimenko, “Use of an oscillator basis for solving continuum problems”, Sov. J. Nucl. Phys. 32, 480 (1980)Google Scholar
  11. 10a.
    G. F. Filippov, “On taking into account correct asymptotic behavior in oscillatorbasis expansions”, Sov. J. Nucl. Phys. 33, 488 (1981).Google Scholar
  12. 11.
    J. M. Bang, A. I. Mazur, A. M. Shirokov, Yu. F. Smirnov, and S. A. Zaytsev, “R-matrix and -matrix approaches: Coulomb asymptotics in the harmonic oscillator representation of scattering theory”, Ann. Phys. (N.Y.) 280, 299 (2000).ADSCrossRefzbMATHGoogle Scholar
  13. 12.
    A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber, “Realistic nuclear Hamiltonian: Ab exitu approach”, Phys. Lett. B 644, 33 (2007).ADSCrossRefGoogle Scholar
  14. 13.
    S. A. Zaitsev, Yu. F. Smirnov, and A. M. Shirokov, “True many-particle scattering in the oscillator representation”, Theor. Math. Phys. 117, 1291 (1998).CrossRefzbMATHGoogle Scholar
  15. 14.
    J. R. Taylor, Scattering theory. Quantum theory of nonrelativistic collisions (Dover Publications, Inc., N.Y., 1972), p. 478.Google Scholar
  16. 15.
    S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T. Papenbrock, “Universal properties of infrared oscillator basis extrapolations”, Phys. Rev. C 87, 044326 (2013).ADSCrossRefGoogle Scholar
  17. 16.
    P. Maris, M. Sosonkina, J. P. Vary, E. G. Ng, and C. Yang, “Scaling of ab-initio nuclear physics calculations on multicore computer architectures”, Procedia Computer Science 1, ICCS 2010 (Elsevier, Amsterdam, 2010), p. 97Google Scholar
  18. 16a.
    H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Topology-Aware Mappings for Large-Scale Eigenvalue Problems”, Lect. Notes Comput. Sci. 7484, 830 (2012)CrossRefGoogle Scholar
  19. 16b.
    H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary, “Improving the scalability of a symmetric iterative eigensolver for multi-core platforms”, Concurrency Computat.: Pract. Exper. 26, 2631 (2014). doi: 10.1002/cpe.3129CrossRefGoogle Scholar
  20. 17.
    J. E. Bond and F. W. K. Firk, “Determination of -function and physical-state parameters for n-4He elastic scattering below 21 MeV”, Nucl. Phys. A 287, 317 (1977).ADSCrossRefGoogle Scholar
  21. 18.
    A. M. Shirokov, A. I. Mazur, J. P. Vary, and E. A. Mazur, “Inverse scattering -matrix approach to nucleonnucleus scattering and the shell model”, Phys. Rev. C 79, 014610 (2009).ADSCrossRefGoogle Scholar
  22. 19.
    A. Csótó and G. M. Hale, “matrix and -matrix determination of the low-energy 5He and 5Li resonance parameters”, Phys. Rev. C 55, 536 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. A. Mazur
    • 1
  • A. M. Shirokov
    • 1
    • 2
    • 3
  • A. I. Mazur
    • 1
  • J. P. Vary
    • 3
  1. 1.Pacific National UniversityKhabarovskRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations