Skip to main content
Log in

Measurement of the proton spin polarizabilities at MAMI

  • XIV International Seminar on Electromagnetic Interactions of Nuclei “EMIN-2015” Moscow, October 5–8, 2015
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The spin polarizabilities of the nucleon are fundamental structure constants which describe the response of the nucleon spin to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is the Compton scattering with polarization degrees of freedom. Three Compton scattering asymmetries on the proton were measured in the Δ(1232) region using a polarized incident photon beam and a polarized (or unpolarized) proton target at the Mainz Microtron (MAMI). These asymmetries are sensitive to values of the spin polarizabilities. Fits to asymmetry data were performed using a dispersion model calculation, and a separation of all four proton spin-polarizabilities in the multipole basis was achieved. The values of the proton spin polarizabilities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. R. Holstein, “Testing QCD at low energies”, Nucl. Phys. A 546, 213–232 (1992).

    Article  ADS  Google Scholar 

  2. D. Babusci, G. Giordano, A. I. L’vov, G. Matone, and A. M. Nathan, “Low-energy Compton scattering of polarized photons on polarized nucleons”, Phys. Rev. C 58, 1013–1041 (1998).

    Article  ADS  Google Scholar 

  3. J. Ahrens et al. (GDH and A2 Collab.), “First measurement of the Gerasimov–Drell–Hearn integral for 1H from 200 to 800 MeV”, Phys. Rev. Lett. 87, 022003 (2001).

    Article  ADS  Google Scholar 

  4. H. Dutz et al. (GDH and A2 Collab.), “First measurement of the Gerasimov–Drell–Hearn integral for 1H from 0.7 to 1.8 GeV at ELSA”, Phys. Rev. Lett. 91, 192001 (2003).

    Article  ADS  Google Scholar 

  5. M. Camen, K. Kossert, F. Wissmann, J. Ahrens, H.-J. Arends, R. Beck, G. Caselotti, P. Grabmayr, P. D. Harty, O. Jahn, P. Jennewein, R. Kondratiev, M. I. Levchuk, V. Lisin, A. I. L’vov, J. C. McGeorge, A. Natter, V. Olmos de Leon, M. Schumacher, B. Seitz, F. Smend, A. Thomas, W. Weihofen, and F. Zapadtka, “Backward spin polarizability of the proton”, Phys. Rev. C 65, 0302202 (2002).

    Article  ADS  Google Scholar 

  6. K. B. Vijaya Kumar, J. A. McGovern, and M. C. Birse, “Spin polarisabilities of the nucleon at NLO in the chiral expansion”, Phys. Lett. B 479, 167–172 (2000).

    Article  ADS  Google Scholar 

  7. G. C. Gellas, T. R. Hemmert, and U.-G. Meissner, “Complete one loop analysis of the nucleonś spin polarizabilities”, Phys. Rev. Lett. 85, 14–17 (2001).

    Article  ADS  Google Scholar 

  8. S. Kondratyuk and O. Scholten, “Compton scattering on the nucleon at intermediate energies and polarizabilities in a microscopic model”, Phys. Rev. C 64, 024005 (2001).

    Article  ADS  Google Scholar 

  9. A. M. Gasparyan, M. F. M. Lutz, and B. Pasquini, “Compton scattering from chiral dynamics with unitarity and causality”, Nucl. Phys. A 866, 79–92 (2011).

    Article  ADS  Google Scholar 

  10. J. A. McGovern, D. R. Phillips, and H. W. Griesshammer, “Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom”, Eur. Phys. J. A 49, 12–31 (2013).

    Article  ADS  Google Scholar 

  11. B. R. Holstein, D. Drechsel, P. Pasquini, and M. Vanderhaeghen, “Higher order polarizabilities of the proton”, Phys. Rev. C 61, 034316 (2000).

    Article  ADS  Google Scholar 

  12. D. Drechsel, B. Pasquini, and M. Vanderhaeghen, “Dispersion relations in real and virtual Compton scattering”, Phys. Rep. 378, 99–205 (2003).

    Article  ADS  Google Scholar 

  13. P. P. Martel et al. (A2 Collab. MAMI), “Measurements of double-polarized Compton scattering asymmetries and extraction of the proton spin polarizabilities”, Phys. Rev. Lett. 114, 112501 (2015).

    Article  ADS  Google Scholar 

  14. C. Collicott, “Probing proton structure through single polarization observables of Compton scattering and photoproduction within the Δ(1232) region”, PhD. Thesis (Dalhousie University, 2015), p. 163.

    Google Scholar 

  15. A. Thomas, N. S. Borisov, H.-J. Arends, A. N. Fedorov, G. M. Gurevich, R. L. Kondratiev, M. Korolija, A. B. Lazarev, M. Martinez, W. Meyer, S. V. Mironov, A. B. Neganov, V. N. Pavlov, H. Ortega, G. Reicherz, and Yu. A. Usov, “The new frozen spin target at MAMI”, Phys. Part. Nucl. 44, 964–967 (2013).

    Article  Google Scholar 

  16. G. Blanpied et al. (LEGS Collab.), “N → Δ transition and proton polarizabilities from measurements of p(γ, γ), p(γ, π0), and p(γ, π+)”, Phys. Rev. C 64, 025203 (2001).

    Article  ADS  Google Scholar 

  17. V. Lensky and V. Pascalutsa, “Predictive powers of chiral perturbation theory in Compton scattering off protons”, Eur. Phys. J. C 65, 195–210 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. M. Gurevich.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurevich, G.M., Lisin, V.P. & A2 collaboration. Measurement of the proton spin polarizabilities at MAMI. Phys. Part. Nuclei 48, 111–116 (2017). https://doi.org/10.1134/S1063779617010105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617010105

Navigation