Skip to main content
  • XIV International Seminar on Electromagnetic Interactions of Nuclei “EMIN-2015” Moscow, October 5–8, 2015
  • Published:

Production of medical 99mTc isotope via photonuclear reaction

Abstract

99mTc with a 6 hour half-life is one of the most important medical isotopes used for the Single-Photon Emission Computed Tomography (SPECT) inspection in hospitals of US, Canada, Europe and Japan. 99mTc isotopes are extracted by the milking method from parent 99Mo isotopes with a 66 hour half-life. The supply of 99Mo isotopes now encounters a serious crisis. Hospitals may not suitably receive 99Mo medical isotopes in near future, due to difficulties in production by research nuclear reactors. Many countries are now looking for alternative ways to generate 99Mo isotopes other than those with research reactors. We discuss a sustained availability of 99mTc isotopes via the natMo(γ, n) photonuclear reaction, and discuss to solve technical problems for extracting pure 99mTc isotopes from other output materials of photonuclear reactions.

This is a preview of subscription content, access via your institution.

References

  1. P. Richards, W. D. Tucker, and S. C. Srivastava, “Technetium- 99m: An historical perspective”, Int. J. Appl. Radiat. Isotopes 33, 793–799 (1982).

    Article  Google Scholar 

  2. C. Perrier and E. Segré, “Technetium: The element of atomic number 43”, J. Chem. Phys. 5, 712–716 (1937).

    ADS  Article  Google Scholar 

  3. C. Perrier and E. Segré, “Technetium: Radioactive isotopes of element 43”, Nature 140, 193–194 (1937).

    ADS  Article  Google Scholar 

  4. R. M. van Noorden, “The medical testing crisis”, Nature 504, 202–204 (2013).

    ADS  Article  Google Scholar 

  5. http://disarmament.un.org/treaties/t/test_ban.

  6. http://www.un.org/disarmament/WMD/Nuclear/ NPT.shtml.

  7. A. Graham, Nuclear Terrorism Fact Sheet (Policy Memo, Belfer Center for Science and International Affairs. Harverd Kennedy School, 2010). http://belfercenter. ksg.harvard.edu/publication/20057/nuclear_terrorism_ fact_sheet.html.

    Google Scholar 

  8. International Atomic Energy Agency, Illicit Nuclear Trafficking: Collective Experience and the Way Forward. http://www-pub.iaea.org/MTCD/publications/ PDF/Pub1316_web.pdf search=’IAEA+Illicit+ Traficking+Database+2009’.

  9. T. Hayakawa, M. Senzaki, P. Bolton, R. Hajima, and M. Seya, Proceedings of the International Symposium “Nuclear Physics and Gamma-Ray Sources for Nuclear Security and Nonproliferation (World Scientific, 2015). ISBN 978-981-4635-44-8.

    Google Scholar 

  10. International Atomic Energy Agency, Alternative technologies for 99Tcm Generators, IAEA-Technical Document 852 (IAEA, Vienna, 1995).

  11. International Atomic Energy Agency, Production Technologies for Molybdenum-99 and Technetium-99m, IAEA-Technical Document 1065 (IAEA, Vienna, 1999).

  12. B. Sholten, R. M. Lambrecht, M. Cogneau, H. V. Ruiz, and S. M. Qaim, “Excitation functions for the cyclotron production of 99mTc and 99Mo”, Appl. Rad. Isotopes 51, 69–80 (1999).

    Article  Google Scholar 

  13. Y. Nagai and Y. Hatsukawa, “Production of 99Mo for nuclear medicine by 100Mo(n, 2n)99Mo”, J. Phys. Soc. Jpn. 78, 033201 (2009).

    ADS  Article  Google Scholar 

  14. B. Guérin, S. Tremblay, S. Rodrigue, J. A. Rousseau, V. Dumulon-Perreault, R. Lecomte, E. van Lier, A. Zyuzin, and E. J. van Lier, “Cyclotron production of 99mTc: An approach to the medical isotope crisis”, J. Nucl. Med. 51, 13N–16N (2010).

    Google Scholar 

  15. M. Lyra, “Alternative production methods to face global molybdenum-99 supply shortage”, Hellennic J. Nucl. Med. 14, 49–55 (2011).

    Google Scholar 

  16. A. R. Jalilian, H. Targholizadeh, G. R. Raisali, H. Zandi, and M. Kamali Dehgan, “Direct technetium radiopharmaceuticals production using a 30 MeV cyclotron”, DARU J. Pharmaceutical Sci. 19, 187–192 (2011).

    Google Scholar 

  17. M. R. A. Pillai, A. Dash, and F. F. Knapp, “Sustained availability of 99mTc: Possible paths forward”, J. Nucl. Med. 54, 313–323 (2013).

    Article  Google Scholar 

  18. S. M. Qaim, S. Sudár, B. Scholten, A. J. Koning, and H. H. Coenen, “Evaluation of excitation functions of 100Mo(p, d + pn)99Mo and 100Mo(p, 2n)99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc”, Appl. Rad. Isotopes 85, 101–113 (2014).

    Article  Google Scholar 

  19. K. Nakai, N. Takahashi, J. Hatazawa, A. Shinohara, Y. Hayashi, H. Ikeda, Y. Kanai, T. Watabe, M. Fukuda, and K. Hatanaka, “Feasibility studies towards future self-sufficient supply of the 99Mo-99mTc isotopes with Japanese accelerators”, Proc. Jpn. Acad. B 90, 413–420 (2014).

    Article  Google Scholar 

  20. H. Beil, R. Bergère, P. Carlos, A. Lepretre, A. De Miniac, and A. Veyssiere, “A study of the photoneutron contribution to the giant dipole resonance in doubly even Mo isotopes”, Nucl. Phys. A 227, 427–449 (1974).

    ADS  Article  Google Scholar 

  21. A. V. Sabel’nikov, O. D. Moslov, L. G. Molokanova, M. V. Gustova, and S. N. Dmitriev, “Preparation of 99Mo and 99mTc by 100Mo(γ, n) photonuclear reaction on an electron accelerator, MT-25 microtron”, Radiochemistry 48, 191–194 (2006).

    Article  Google Scholar 

  22. C. Ross, R. Galea, P. Saull, W. Davidson, P. Brown, D. Brown, J. Harvey, G. Messina, R. Wassenaar, and M. De Jong, “Using the 100Mo photoneutron reaction to meet Canada’s requirement for 99mTc”, Phys. Can. 66, 19–24 (2010).

    Google Scholar 

  23. H. Ejiri, T. Shima, S. Miyamoto, K. Horikawa, Y. Kitagawa, Y. Asano, S. Datè, and Y. Ohashi, “Resonant photonclear reactions for isotope transmutation”, J. Phys. Soc. Jpn. 80, 094202 (2011).

    ADS  Article  Google Scholar 

  24. B. Szpunar, C. Rangacharyulu, S. Daté, and H. Ejiri, “Estimate of production of medical isotopes by photoneutron reaction at the Canadian light source”, Nucl. Instrum. Meth. Phys. Res. A 729, 41–50 (2013).

    ADS  Article  Google Scholar 

  25. http://www.usp.org/usp-healthcare-professionals/compounding/compounding-general-chapters.

  26. H. Utsunomiya, T. Shima, K. Takahisa, D. M. Filipescu, O. Tesileanu, I. Gheorghe, H.-T. Nyhus, T. Renstrom, Y.-W. Lui, Y. Kitagawa, S. Amano, and S. Miyamoto, “Energy calibration of the NewSUBARU storage ring for laser Compton-scattering gamma ray and applications”, IEEE Trans. Nucl. Phys. 61, 1252–1258 (2014).

    ADS  Article  Google Scholar 

  27. H. Utsunimiya, S. Hashimoto, and S. Miyamoto, “The γ-ray beam-line at NewSUBARU”, Nucl. Phys. News 25, 25–29 (2015).

    Article  Google Scholar 

  28. H. Kikunaga, Private communication, 2014.

  29. V. N. Starovoitova, L. Tchelidze, and D. P. Wells, “Production of medical radioisotopes with linear accelerator”, Appl. Rad. Isotopes 85, 39–44 (2014).

    Article  Google Scholar 

  30. R. H. Busey and Q. V. Larson, Spectrophotometric Examination of Certain Oxidation States of Technetium and Rhenium, U. S. Atomic Energy Commission Document, ORNL-2584, 1954, pp. 5–6.

    Google Scholar 

  31. E. Anders, “Technetium and astatine chemistry”, Ann. Rev. Nucl. Sci. 9, 203–220 (1959).

    ADS  Article  Google Scholar 

  32. K. Schwochau, Technetium: Chemistry and Radiopharmaceutical Applications (WILEY-VCH, 2000), pp. 1–423; ISBN 3-527-29496-1.

    Book  Google Scholar 

  33. J. D. Christian, D. A. Petti, R. J. Kirkham, and R. G. Bennett, “Advances in sublimation separation of technetium from low-specific-activity molybdenum-99”, Ind. Eng. Chem. Res. 39, 3157–3168 (2000).

    Article  Google Scholar 

  34. J. Gerse, J. Kern, J. Imre, and L. Zsinka, “Examination of portable 99Mo/99mTc isotope generator: SUBLITECH”, J. Rad. Nucl. Chem 1988. V. 28. P. 71–79.

    Google Scholar 

  35. L. G. Colombetti, V. Hűšak, and V. Dvořák, “Study of the purity of 99mTc sublimed from fission 99Mo and the radiation dose from the impurities”, Int. J. Appl. Rad. Isotopes 25, 35–41 (1974).

    Article  Google Scholar 

  36. R. E. Boyd, “Technetium-99m generators–The available options”, Int. J. Appl. Rad. Isotopes 33, 801–819 (1982).

    Article  Google Scholar 

  37. L. Zsinka, “99mTc sublimation generator”, Radiochimica 41, 91–96 (1987).

    Google Scholar 

  38. R. G. Bennett, J. D. Christian, S. Blaine Grover, D. A. Petti, W. K. Terry, and W. Y. Yoon, U.S. Patent No. 5, 802, 439 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fujiwara.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, M., Nakai, K., Takahashi, N. et al. Production of medical 99mTc isotope via photonuclear reaction. Phys. Part. Nuclei 48, 124–133 (2017). https://doi.org/10.1134/S1063779617010075

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617010075