Abstract
The current status of the experiment on recording neutrino bursts from core collapse stars is presented. The actual observational time is 29.76 years. An upper bound of the mean frequency of core collapse supernovae in our Galaxy is f col < 0.077 year–1 (90% CL).
Similar content being viewed by others
References
K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K.Miyano, M. Yamada, E. W. Beier, L. R. Feldscher, S. B. Kim, A. K. Mann, F. M. Newcomer, R. Van, W. Zhang, and B. G. Cortez, “Observation of a neutrino burst from the supernova SN1987A,” Phys. Rev. Lett. 58, 1490 (1987).
R. M. Bionta, G. Blewitt, C. B. Bratton et al. (IMB Collab.), “Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud,” Phys. Rev. Lett. 58, 1494 (1987).
E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I. Volchenko, “Detection of the neutrino signal from SN, 1987A using the INR Baksan underground scintillation telescope,” JETP Lett. 45, 589 (1987).
M. Aglietta, G. Badino, G. Bologna, C. Castagnoli, A. Castellina, W. Fulgione, P. Galeotti, O. Saavedra, G. Trinchero, S. Vernetto, V. L. Dadykin, O. G. Ryazhskaya, G. T. Zatsepin, and V. F. Yakushev, “On the event observed in the Mont Blanc Underground Neutrino observatory during the occurrence of Supernova 1987A,” Europhys. Lett. 3, 1315 (1987).
G. Gamow and M. Shoenberg, “The possible role of neutrinos in stellar evolution,” Phys. Rev. 58, 1117 (1940).
Ya. B. Zeldovich and O. Kh. Guseinov, “Neutronization of matter during collapse and the neutrino spectrum,” Dokl. Akad. Nauk SSSR 162, 791 (1965).
S. A. Colgate and R. H. White, “The hydrodynamic behavior of supernovae explosions,” Astrophys. J. 143, 626 (1966).
T. J. Loredo and D. Q. Lamb, “Bayesian analysis of neutrinos from supernova SN1987A,” Phys. Rev. D 65, 063002 (2002).
G. Pagliaroli, F. Vissani, M. L. Costantini, and A. Ianni, “Improved analysis of SN1987A antineutrino events,” Astropart. Phys. 31, 163 (2009).
S. M. Adams, C. S. Kochanek, J. F. Beacom, M. R. Vagins, and K. Z. Stanek, “Observing the next galactic supernova,” Astrophys. J. 778, 164 (2013).
M. Ikeda, A. Takeda, Y. Fukuda et al. (Super-Kamiokande Collab.), “Search for supernova neutrino bursts at Super-Kamiokande,” Astrophys. J. 669, 519 (2007).
E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, V. N. Zakidyshev, G. D. Korotkii, N. A. Metlinskii, V. Ya. Poddubny’i, A. Yu. Reutov, A. E. Chudakov, and A. F. Yanin, “Upper bound on the collapse rate of massive stars in the Milky Way given by neutrino observations with the Baksan underground telescope,” Zh. Eksp. Teor. Fiz. 104, 2897 (1993).
R. V. Novoseltseva, M. M. Boliev, I. M. Dzaparova, M. M. Kochkarov, S. P. Mikheyev, Yu. F. Novoseltsev, V. B. Petkov, P. S. Striganov, V. I. Volchenko, G. V. Volchenko, and A. F. Yanin, “The search for neutrino bursts from core collapse supernovae at the Baksan underground scintillation telescope,” Proceedings of the 31th ICRC, Lodz., 2009.
M. Ambrosio et al. (MACRO Collab.), “Search for stellar gravitational collapses with the MACRO detector,” Eur. Phys. J. C 37, 265 (2004).
M. Aglietta et al. (LVD Collab.), “The most powerful scintillator supernovae detector: LVD,” Nuovo Cimento A 105, 1793 (1992).
N. Yu. Agafonova, M. Aglietta, P. Antonioli et al. (LVD Collab.), “Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector,” Astropart. Phys. 27, 254 (2007).
J. Ahrens et al. (AMANDA Collab.), “Search for supernova neutrino bursts with the AMANDA detector,” Astropart. Phys. 16, 345 (2002).
B. Aharmim, S. N. Ahmed, A. E. Anthony, N. Barros, E. W. Beier, A. Bellerive, B. Beltran, M. Bergevin, S. D. Biller, and K. Boudjemline, “Low multiplicity burst search at the Sudbury neutrino observatory,” Astrophys. J. 728, 83 (2011).
T. Lund, A. Marek, C. Lunardini, H.-T. Janka, and G. Raffelt, “Fast time variations of supernova neutrino fluxes and their detectability,” Phys. Rev. D 82, 063007 (2010).
G. Bellini et al. (Borexino Collab.), “First real time detection of 7Be solar neutrinos by Borexino,” Phys. Lett. B 658 (4), 101 (2007).
G. Bellini, “Novel results on low energy neutrino physics,” Proceedings of the Talk at TAUP 2011 conference, Munich, 5–9 Sept. 2011.
K. Eguchi et al. (KamLAND Collab.), “First results from KamLAND: Evidence for reactor antineutrino disappearance,” Phys. Rev. Lett. 90, 021802 (2003).
E. N. Alexeyev, V. V. Alexeyenko, Yu. M. Andreyev, V.N. Bakatanov, A. V. Butkevich, A. E. Chudakov, M. D. Galperin, A. A. Gitelson, V. I. Gurentsov, A. E. Danshin, V. A. Dogujaev, V. L. Dadikin, Ya. S. Elensky, V. A. Kozyarivsky, I. M. Kogai, N. F. Klimenko, A. A. Kiryushin, Yu. N. Konovalov, B. A. Makoev, V. Ya. Markov, Yu. Ya. Markov, Yu. V. Malovichko, N. A. Metlinsky, A. R. Mishelev, S. P. Mikheyev, Yu. F. Novoseltsev, V. G. Sborshikov, V. V. Sklyarov, V. I. Stepanov, Yu. V. Stenkin, Yu. R. Sulla-Petrovsky, T. I. Tulupova, A. V. Voevodsky, V. I. Volchenko, and V. N. Zakideshev, “Baksan underground scintillation telescope,” Proceedings of the 16 ICRC, Kyoto, 1979, vol. 10, p. 276.
V. M. Achkasov, V. N. Bakatanov, Yu. F. Novoseltsev, R. V. Novoseltseva, A. M. Semenov, Yu. V. Sten’kin, and A. E. Chudakov, “An investigation of the energy spectrum and inelastic muon interaction at the Baksan Underground scintillation telescope,” Bull. Russ. Acad. Sci. Phys. 50, 2224 (1986).
V. S. Imshennik and D. K. Nadezhin, “Final stages of star evolution and supernova explosions,” Itogi Nauki i Tehniki, ser. Astronomy 21, 63 (1982).
W. Hillebrandt and P. Hoflish, “The supernova 1987A in the Large Magellanic Cloud,” Rep. Prog. Phys. 52, 1421 (1989).
J. Pantaleone, “Neutrino oscillations at high densities,” Phys. Lett. B 287, 128 (1992).
R. F. Sawyer, “Speed-up of neutrino transformations in a supernova environment,” Phys. Rev. D 72, 045003 (2005).
H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, “Simulation of coherent non-linear neutrino flavor transformation in the supernova environment I: Correlated neutrino trajectories, “ Phys. Rev. D 74, 105014 (2006).
I. Tamborra, G. Raffelt, F. Hanke, H.-T. Janka, and B. Muller, “Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations,” Phys. Rev. D 90, 045032 (2014); arXiv: 1406.0006 (2014).
V. S. Imshennik, “Explosion mechanism in supernovae collapse,” Space Sci. Rev. 74, 325 (1995).
V. Bajkov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, “Radiation of a neutrino mechanism for type II supernovae,” Russ. Astronom. J. 84 (4), 308 (2007).
R. V. Novoseltseva, M. M. Boliev, G. M. Vereshkov, V. I. Volchenko, G. V. Volchenko, I. M. Dzaparova, M.M. Kochkarov, M. G. Kostyuk, Yu. F. Novoseltsev, V. B. Petkov, P. S. Striganov, and A. F. Yanin, “The search for neutrino bursts from collapsing core supernovae at the Baksan underground scintillation telescope,” Bull. Russ. Acad. Sci. Phys. 75, 419 (2011).
T. D. Brandt, A. Burrows, C. D. Ott, and E. Livne, “Results from core-collapse simulations with multidimensional, multiangle neutrino transport,” Astrophys. J. 728, 8 (2011).
B. Muller, H.-Th. Janka, and A. Marek, “A new multidimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae II. Relativistic explosion models of core-collapse supernovae,” Astrophys. J. 756, 84 (2012).
B. Muller, H.-T. Janka, and A. Heger, “New twodimensional models of supernova explosions by the neutrino-heating mechanism: Evidence for different instability regimes in collapsing stellar cores,” Astrophys. J. 761, 72 (2012).
F. Hanke, A. Marek, B. Muller, and H.-Th. Janka, “Is strong SASI activity the key to successful neutrinodriven supernova explosions?,” Astrophys. J. 755, 138 (2012).
T. Takiwaki, K. Kotake and Y. Suwa, “Three-dimensional hydrodynamic core-collapse supernova simulations for an 11.2 Msun star with spectral neutrino transport,” Astrophys. J. 749, 98 (2012).
A. Burrows, J. Dolence, and J. Murphy, “An investigation into the character of pre-explosion core-collapse supernova shock motion,” Astrophys. J. 759, 5 (2012).
C. D. Ott, E. Abdkimalov, P. Moesta, R. Haas, S. Drasco, E. O’Connor, C. Reisswig, C. Meakin, and E. Schnetter, “General-relativistic simulations of three-dimensional core-collapse supernovae,” Astrophys. J. 768, 115 (2013).
I. Tamborra, F. Hanke, H. Janka, B. Muller, G. Raffelt, and A. Marek, “Self-sustained asymmetry of leptonnumber emission: A new phenomenon during the supernova shock-accretion phase in three dimensions,” Astrophys. J. 792, 96 (2014); arXiv:1402.5418 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Talk at the International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics”, Valdai, Russia, February 1–7, 2015.
The article is published in the original.
Rights and permissions
About this article
Cite this article
Novoseltseva, R.V., Boliev, M.M., Dzaparova, I.M. et al. The search for neutrino bursts from supernovae with Baksan underground scintillation telescope. Phys. Part. Nuclei 47, 968–974 (2016). https://doi.org/10.1134/S1063779616060198
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063779616060198