Skip to main content
Log in

O(1) eV sterile neutrino in f(R) gravity

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We refer [1] to the role of an additional O(1) eV sterile neutrino in modified gravity models. We find parameter constraints in particular f(R) gravity model using following up-to-dated cosmological data: measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. It was obtained for the sterile neutrino mass 0.47 eV < m ν,sterile < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard cosmology model within the same data set: 0.45 eV < m ν,sterile < 0.92 eV (2σ). But, if the mass of sterile neutrino is fixed and equals ≈ 1.5 eV according to various anomalies in neutrino oscillation experiments, f(R) gravity is much more consistent with observation data than the CDM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Chudaykin, A. A. Starobinsky, D. S. Gorbunov, and R. A. Burenin, “Cosmology based on gravity with 2(1) eV sterile neutrino,” J. Cosmol. Astropart. P. 05, 004 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Nojiri and S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy,” Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Starobinsky, “Disappearing cosmological constant in gravity,” JETP Lett. 86, 157 (2007).

    Article  ADS  Google Scholar 

  4. H. Motohashi, A. A. Starobinsky, and J. Yokoyama, “Matter power spectrum in gravity with massive neutrinos,” Prog. Theor. Phys. 124, 541 (2010).

    Article  MATH  ADS  Google Scholar 

  5. Y. I. Izotov, T. X. Thuan, and N. G. Guseva, “A new determination of the primordial He abundance using the HeI 10830A emission line: Cosmological implications,” Mon. Not. Roy. Astron. Soc. 445,778 (2014).

    Article  ADS  Google Scholar 

  6. K. A. Olive et al. (Particle Data Group), “Review of particle physics,” Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  7. P. Anselmann et al. (GALLEX Collab.), “First results from the Cr-51 neutrino source experiment with the GALLEX detector,” Phys. Lett. B 342, 440 (1995).

    Article  ADS  Google Scholar 

  8. D. N. Abdurashitov et al. (SAGE Collab.), “The Russian- American gallium experiment (SAGE) Cr neutrino source measurement,” Phys. Rev. Lett. 77, 4708 (1996).

    Article  ADS  Google Scholar 

  9. C. Giunti and M. Laveder, “Statistical significance of the gallium anomaly,” Phys. Rev. C 83, 065504 (2011).

    Article  ADS  Google Scholar 

  10. S. A. Appleby, R. A. Battye, and A. A. Starobinsky, “Curing singularities in cosmological evolution of F(R) gravity,” J. Cosmol. Astropart. P. 1006, 005 (2010).

    Article  ADS  Google Scholar 

  11. A. De Felice and S. Tsujikawa, “theories,” Living Rev. Rel. 13, 3 (2010).

    Article  MATH  Google Scholar 

  12. A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models,” Astrophys. J. 538, 473 (2000).

    Article  ADS  Google Scholar 

  13. A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A Monte-Carlo approach,” Phys. Rev. D 66, 103511 (2002).

    Article  ADS  Google Scholar 

  14. P. A. R. Ade et al. (Planck Collab.), “Planck 2013 results. I. Overview of products and scientific results,” Astron. Astrophys. 571, A1 (2014).

    Article  Google Scholar 

  15. C. L. Bennett et al. (SAGE Collab.), “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Final maps and results,” AstroPhys. J. Suppl. 208, 20 (2013).

    Article  ADS  Google Scholar 

  16. S. Das et al. (ACT Collab.), “The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data,” J. Cosmol. Astropart. P. 1404, 014 (2014).

    Article  ADS  Google Scholar 

  17. R. Keisler et al. (SPT Collab.), “A measurement of the damping tail of the cosmic microwave background power spectrum with the south pole telescope,” Astrophys. J. 743, 28 (2011).

    Article  ADS  Google Scholar 

  18. J. K. Parejko et al. (SDSS-III Collab.), “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: The low redshift sample,” Mon. Not. Roy. Astron. Soc. 429, 98 (2013).

    Article  ADS  Google Scholar 

  19. C. Maraston et al. (SDSS-III Collab.), “Stellar masses of SDSS-III BOSS galaxies at z ~ 0.5 and constraints to galaxy formation models,” Mon. Not. Roy. Astron. Soc. 435, 2764 (2013).

    Article  ADS  Google Scholar 

  20. D. H. Jones, M. A. Read, W. Saunders, M. Colless, T. Jarrett, Q. Parker, A. Fairall, T. Mauch, E. Sadler, F. Watson, D. Burton, L. Campbell, P. Cass, S. Croom, J. Dawe, K. Fiegert, L. Frankcombe, M. Hartley, J. Huchra, D. James, E. Kirby, O. Lahav, J. Lucey, G.Mamon, L. Moore, B. Peterson, S. Prior, D. Proust, K. Russell, V. Safouris, K. Wakamatsu, E. Westra, and M. Williams, “The 6dF Galaxy Survey: Final redshift release (DR3) and southern large-scale structures,” Mon. Not. Roy. Astron. Soc. 399, 683 (2009).

    Article  ADS  Google Scholar 

  21. A. G. Riess, L. Macri, S. Casertano, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, and R. Chornock, “A 3% solution: Determination of the Hubble constant with the Hubble Space Telescope and wide field camera 3,” Astrophys. J. 730, 119 (2011); 732, 129 (2011).

    Article  ADS  Google Scholar 

  22. P. A. R. Ade et al. (Planck Collab.), “Planck 2013 results. XVII. Gravitational lensing by large-scale structure,” Astron. Astrophys. 571, A17 (2014).

    Article  Google Scholar 

  23. A. A. Vikhlinin, R. A. Burenin, H. Ebeling, W. R. Forman, A. Hornstrup, C. Jones, A. V. Kravtsov, S. S. Murray, D. Nagai, H. Quintana, and A. Voevodkin, “Chandra cluster cosmology project II: Samples and X-ray data reduction,” Astrophys. J. 692, 1033 (2009).

    Article  ADS  Google Scholar 

  24. R. A. Burenin, A. Vikhlinin, A. Hornstrup, H. Ebeling, H. Quintana, and A. Mescheryakov, “The 400 square degree ROSAT PSPC Galaxy Cluster Survey: Catalog and statistical calibration,” Astrophys. J. 172, 561 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Chudaykin.

Additional information

Talk at The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–8, 2015, Valday, Russia.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chudaykin, A.C. O(1) eV sterile neutrino in f(R) gravity. Phys. Part. Nuclei 48, 55–58 (2017). https://doi.org/10.1134/S1063779616060071

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616060071

Navigation