Skip to main content
Log in

Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Reviewed are the results of simulating the neutron scattering instruments with the program package VITESS upgraded by the routines for treating the polarized neutrons, as developed by the authors. The reported investigations have been carried out at the Frank Laboratory for Neutron Physics at JINR in collaboration with the Juelich research center (Germany). The performance of the resonance and gradient adiabatic spin flippers, the Drabkin resonator, the classical and resonance spin-echo spectrometers, the spin-echo diffractometer for the small-angle neutron scattering, and the spin-echo spectrometer with rotating magnetic fields is successfully modeled. The methods for using the 3D map of the magnetic field from the input file, either mapped experimentally or computed using the finite-elements technique, in the VITESS computer code, are considered in detail. The results of neutron-polarimetry experiments are adequately reproduced by our simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wechsler, G. Zsigmond, F. Streffer, and F. Mezei, “VITESS: Virtual instrumentation tool for pulsed and continuous sources”, Neutron News 11, 25 (2000).

    Article  Google Scholar 

  2. K. Lefmann et al. (McStas Collaboration), “Virtual experiments: The ultimate aim of neutron ray-tracing simulations”, J. Neutron Res. 16, 97 (2008).

  3. P. A. Seeger, L. L. Daemen, E. Farhi, W.-T. Lee, L. Passell, J. Saroun, X.-L. Wang, and G. Zsigmond, “A model instrument for Monte Carlo code comparisons”, Neutron News 13, 24 (2002).

  4. J. Šaroun and J. Kulda, “RESTRAX–a program for TAS resolution calculation and for scan profile simulations”, Physica B 234–236, 1102 (1997).

    Google Scholar 

  5. A. V. Belushkin and S. A. Manoshin, “Monte Carlo optimisation of SANS spectrometer at IBR-2 reactor”, J. Phys. Soc. Jpn. 70, 451 (2001).

    Google Scholar 

  6. A. V. Belushkin and S. A. Manoshin, “Simulations of virtual SANS spectrometers at IBR-2 reactor”, Journal of Neutron Research 10, 79 (2002).

    Article  Google Scholar 

  7. S. A. Manoshin, G. Zsigmond, K. Lieutenant, and F. Mezei, “Simulations of a convergent bender as neutron polariser for NSE spectrometers”, Physica B: Condensed Matter 335, 270 (2003).

    Article  ADS  Google Scholar 

  8. S. A. Manoshin, A. V. Belushkin, and A. I. Ioffe, “VITESS polarized neutron suite: Allows for the simulation of performance of any existing polarized neutron scattering instrument”, Physica B: Condensed Matter 406, 2337 (2011).

    Article  ADS  Google Scholar 

  9. S. A. Manoshin, A. V. Belushkin, S. A. Kulikov, E. P. Shabalin, K. Walther, C. Scheffzuek, and V. V. Zhuravlev, “Optimization of a moderator-neutron guide system for diffractometers of beam line 7A of the IBR-2M reactor”, Nucl. Instrum. Meth. A 608, 447 (2009).

    Article  ADS  Google Scholar 

  10. P. Ehrenfest, “A remark on approximate validity of classical mechanics in the framework of quantum mechanics”, in Otnositel’nost’. Kvanty. Statistika: Sb. st. (Moscow, 1972), pp. 82–84 [in Russian].

    Google Scholar 

  11. W. Gerlach and O. Stern, “Der Experimentelle Nachweis der Richtungsquantelung im Magnetfeld”, Z. Phys. 9, 349 (1922).

    Article  ADS  Google Scholar 

  12. http://wwwansyscom/.

  13. http://wwwinfolyticacom/en/products/magnet/.

  14. A. I. Ioffe and S. A. Manoshin, “Larmor labeling by thin spin flippers with rotating magnetic field: Simulations of performance of neutron scattering instruments”, Nucl. Instrum. Methods. A 529, 45 (2004).

    Article  ADS  Google Scholar 

  15. “Neutron spin echo”, Ed. by F. Mezei, in Lecture Notes in Physics (Berlin: Springer, 1980), v. 128.

  16. G. M. Drabkin, “Analysis of energy spectra of polarized neutrons with the aid of a magnetic field”, Zh. Eksp. Teor. Fiz. 43, 1107 (1962) [in Russian].

    Google Scholar 

  17. M. M. Agamalyan, G. M. Drabkin, and V. I. Sbitnev, “Spatial spin resonance of polarized neutrons. A tunable slow neutron filter”, Phys. Rep. 168, 265 (1988).

    Article  ADS  Google Scholar 

  18. S. A. Manoshin, “New software tools for simulations of new instruments for the future neutron sources”, Ph. D. Thesis (Berlin: TU-Berlin, 2005).

    Google Scholar 

  19. A. N. Bazhenov, V. M. Lobashev, A. N. Pirozhkov, and V. N. Slusar, “An adiabatic resonance spin-flipper for thermal and cold neutrons”, Nucl. Instrum. Meth. A 332, 534 (1993).

    Article  ADS  Google Scholar 

  20. S. V. Grigoriev, A. I. Okorokov, and V. V. Runov, “Peculiarities of the construction and application of a broadband adiabatic flipper of cold neutrons”, Nucl. Instrum. Meth. A 384, 451 (1997).

    Article  ADS  Google Scholar 

  21. F. Mezei, “Neutron spin-echo—new concept in polarized thermal-neutron techniques”, Z. Phys. 255, 146 (1972).

    Article  ADS  Google Scholar 

  22. R. Golub and R. Gaehler, “A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering”, Phys. Lett. A 123, 43 (1987).

    Article  ADS  Google Scholar 

  23. A. I. Ioffe, “Wide angle high-resolution spectroscopy at pulsed neutron sources”, Physica B 335, 169 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  24. G. P. Felcher, S. G. E. te Velthuis, J. Major, H. Dosch, C. Anderson, K. Habicht, and T. Keller, “Spin-echo resolved grazing incidence scattering (SERGIS) of cold neutrons”, in Proceedings of SPIE Optical Engineering Press (2002), v. 4785, pp. 164–174.

    Google Scholar 

  25. M. Th. Rekveldt, J. Plomp, W. G. Bouwman, W. H. Kraan, S. V. Grigoriev, and M. Blaauw, “Spinecho small angle neutron scattering in Delft”, Review of Scientific Instruments 76, 033901 (2005).

    Article  ADS  Google Scholar 

  26. S. A. Manoshin, A. B. Rubtsov, V. Bodnarchuk, S. Mattauch, and A. I. Ioffe, “Extension of the VITESS polarized neutron suite towards the use of imported magnetic field distributions”, Journal of Neutron Research 17, 19 (2014).

    Google Scholar 

  27. A. B. Rubtsov, C. A. Manoshin, V. I. Bodnarchuk, R. V. Erkhan, and S. V. Grigor’ev, “A Monte Carlo estimate of the effect of scattered magnetic fields on polarization of a thermal-neutron beam passing through an electromagnet and a zero-field chamber”, Poverkhnost’: Rentgenovskie, Sinkhrotronnye I Neitronnye Issledovaniya 12, 5 (2013).

    Google Scholar 

  28. http://europeanspallationsource. se.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Manoshin.

Additional information

Original Russian Text © S.A. Manoshin, A.V. Belushkin, A.I. Ioffe, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.

Review paper for the JINR-2015 Jubilee Issue of Physics of Particles and Nuclei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoshin, S.A., Belushkin, A.V. & Ioffe, A.I. Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments. Phys. Part. Nuclei 47, 667–680 (2016). https://doi.org/10.1134/S1063779616040109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040109

Navigation