Skip to main content
Log in

Ultracold neutrons and the interaction of waves with moving matter

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The present review is focused on the problem of interaction of neutron waves with moving matter. The validity of the 1/v law for ultracold neutrons and the possibility to characterize the interaction of neutrons with matter using the effective potential were verified in the so-called null Fizeau experiments. A neutron wave in such experiments propagates through a flat sample that moves parallel to its edges. The observation of effects caused by this motion provides evidence that the concept of constant effective potential is not correct. The second part of the review deals with the prediction and the first observation of the accelerated matter effect (a change in the energy of neutrons in passing through a refractive sample that moves with an acceleration directed along or opposite the direction of neutron propagation). The characteristic features of this phenomenon in the case of birefringent material are considered. In conclusion, the problem of propagation of neutron waves in matter moving with giant acceleration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Halban and P. Preiswerk, “Preuve expérimentale de la diffraction des neutrons,” C. R. Acad. Sci. 203, 73–75 (1936).

    Google Scholar 

  2. D. P. Mitchell and P. N. Powers, “Bragg reflection of slow neutrons,” Phys. Rev. 50, 486–487 (1936).

    Article  ADS  Google Scholar 

  3. W. M. Elsasser, “Sur la diffraction des neutrons lents par les substances cristallines,” C. R. Acad. Sci. 202, 1029–1030 (1936).

    MATH  Google Scholar 

  4. H. L. Anderson, in Enrico Fermi. Note e Memorie (Collected Papers) (Accademia Nazionale dei Lincei, Univ. of Chicago Press, 1962), Vol. 2, p. 425.

  5. E. Fermi and W. H. Zinn, “Collimation of the neutron beam from thermal column of CP-3 and the index of refraction for thermal neutrons,” in Enrico Fermi. Note e Memorie (Collected Papers) (Accademia Nazionale dei Lincei, Univ. of Chicago Press, 1962), Vol. 2, p. 425.

    Google Scholar 

  6. L. J. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Lax, “Multiple scattering of waves. II. The effective field in dense systems,” Phys. Rev. 85, 621–629 (1952).

    Article  ADS  MATH  Google Scholar 

  9. Ya. B. Zel’dovich, “Storage of cold neutrons,” J. Exp. Theor. Phys. 9, 1389–1390 (1959).

    Google Scholar 

  10. V. I. Lushchikov, Yu. N. Pokotilovskii, A. V. Strelkov, and F. L. Shapiro, “Observation of ultracold neutrons,” JETP Lett. 9, 23–26 (1969).

    ADS  Google Scholar 

  11. F. L. Shapiro, “Ultracold neutrons,” in Neutron Studies (Nauka, Moscow, 1976), pp. 229–247 [in Russian].

    Google Scholar 

  12. A. I. Frank, “I. M. Frank and the optics of ultracold neutrons,” Phys. -Usp. 52, 397–405 (2009).

    Article  ADS  Google Scholar 

  13. I. M. Frank, “Neutron optics and ultracold neutrons,” Sov. Phys. Usp. 34, 988–996 (1991).

    Article  ADS  Google Scholar 

  14. V. F. Sears, “Fundamental aspects of neutron optics,” Phys. Rep. 82, 1–29 (1982).

    Article  ADS  Google Scholar 

  15. M. Warner and J. E. Gubernatis, “Neutron refractive index: A Fermi–Huygens theory,” Phys. Rev. B 32, 6347–6358 (1985).

    Article  ADS  Google Scholar 

  16. A. I. Frank and V. G. Nosov, “Long-wavelength neutron dispersion law and the possibility of its precise experimental test,” Yad. Fiz. 58, 453–460 (1995).

    Google Scholar 

  17. V. G. Nosov and A. I. Frank, “Superslow neutrons and the dispersion law for neutron waves in matter,” Phys. Rev. A 55, 1129–1139 (1997).

    Article  ADS  Google Scholar 

  18. V. K. Ignatovich and M. Utsuro, “Optical potential and dispersion law for long-wavelength neutrons,” Phys. Rev. B 55, 14774 (1997).

    Article  ADS  Google Scholar 

  19. A. L. Barabanov and S. T. Belyaev, “On the potential of ultracold neutrons interaction with matter,” Phys. At. Nucl. 62, 769–775 (1999).

    Google Scholar 

  20. A. G. Klein and S. A. Werner, “Neutron optics,” Rep. Prog. Phys. 46, 259–335 (1983).

    Article  ADS  Google Scholar 

  21. M. Arif, H. Kaiser, S. A. Werner, A. Cimmino, W. A. Hamilton, A. G. Klein, and G. I. Opat, “Null Fizeau effect for thermal neutrons in moving matter,” Phys Rev. A 31, 1203–1205 (1985).

    Article  ADS  Google Scholar 

  22. V. F. Sears, “Fizeau effect for neutrons,” Phys. Rev. A 32, 2524–2525 (1985).

    Article  ADS  Google Scholar 

  23. M. Arif, H. Kaiser, R. Clothier, S. A. Werner, R. Berliner, W. A. Hamilton, A. Cimmino, and A. G. Klein, “Fizeau effect for neutrons passing through matter at a nuclear resonance,” Physica B+C 151, 63–67 (1988).

    Article  ADS  Google Scholar 

  24. M. Arif, H. Kaiser, R. Clothier, S. A. Werner, W. A. Hamilton, A. Cimmino, and A. G. Klein, “Observation of a motion-induced phase shift of neutron de Broglie waves passing through matter near a nuclear resonance,” Phys. Rev. A 39, 931–937 (1989).

    Article  ADS  Google Scholar 

  25. H. R. Bilger and A. T. Zavodny, “Fresnel drag in a ring laser: Measurement of the dispersive term,” Phys. Rev. A 5, 591–599 (1972).

    Article  ADS  Google Scholar 

  26. A. A. Seregin, “Concerning a bound neutron in matter,” J. Exp. Theor. Phys. 46, 859–861 (1977).

    ADS  Google Scholar 

  27. K.-A. Steinhauser, A. Steyerl, H. Scheckenhofer, and S. S. Malik, “Observation of quasibound states of the neutron in matter,” Phys. Rev. Lett 44, 1306–1309 (1980).

    Article  ADS  Google Scholar 

  28. Yu. N. Pokotilovskii and M. I. Novopoltsev, Communication OIYaI R3-81-821 (Joint Inst. for Nuclear Research, Dubna, 1981).

    Google Scholar 

  29. M. I. Novopoltsev, Yu. N. Pokotilovskii, and I. G. Shelkova, “Time-of-flight spectrometry of ultracold neutrons with a thin film ferromagnetic chopper,” Nucl. Instrum. Methods Phys. Res., Sect. A 264, 518–520 (1988).

    Article  ADS  Google Scholar 

  30. A. Steyerl, T. Ebisawa, K.-A. Steinhauser, and M. Utsuro, “Experimental study of macroscopic coupled resonators for neutron waves,” Z. Phys. B 41, 283–286 (1981).

    Article  ADS  Google Scholar 

  31. A. Steyerl, W. Drexel, S. S. Malik, and E. Gutsmiedl, “Neutron resonators and interferometers for very low energy neutrons,” Physica B+C 151, 36–43 (1988).

    Article  ADS  Google Scholar 

  32. I. V. Bondarenko, A. I. Frank, S. N. Balashov, S. V. Masalovich, and V. G. Nosov, “Proposed fundamental investigations using neutron interference filters and gravity spectrometry,” J. Phys. Soc. Jpn. 65 Suppl. A, 29–32 (1996).

    Google Scholar 

  33. I. V. Bondarenko, A. I. Frank, S. V. Balashov, S. V. Masalovich, V. G. Nosov, A. Cimmino, A. Klein, P. Geltenbort, and P. Hoghoj, “High resolution spectrometer for the experimental test of the long-wave neutron dispersion law,” in Proc. V Int. Seminar on Interaction of Neutrons with Nuclei, Dubna, Russia, 1997, E3-97-213, pp. 418–421.

    Google Scholar 

  34. I. V. Bondarenko, A. V. Krasnoperov, A. I. Frank, S. N. Balashov, S. V. Masalovich, V. G. Nosov, P. Geltenbort, P. Hoghoj, A. G. Klein, and A. Cimmino, “Experimental check of the dispersion law for ultracold neutrons,” JETP Lett. 67, 786–792 (1998).

    Article  ADS  Google Scholar 

  35. I. V. Bondarenko, V. I. Bodnarchuk, S. N. Balashov, P. Geltenbort, A. G. Klein, A. V. Kozlov, D. A. Korneev, S. V. Masalovich, V. G. Nosov, A. I. Frank, P. Hoghoj, and A. Cimmino, “Neutron interference filters and fundamental experiments with ultracold neutrons,” Phys. At. Nucl. 62, 721–737 (1999).

    Google Scholar 

  36. A. I. Frank, S. V. Balashov, V. I. Bodnarchuk, I. V. Bondarenko, A. Cimmino, P. Geltenbort, P. Hoghoj, A. G. Klein, D. Korneev, A. V. Kozlov, and S. V. Masalovich, “Neutron multilayer structures for fundamental experiments in UCN optics,” Proc. SPIE 3767, 360–371 (1999).

    Article  ADS  Google Scholar 

  37. A. I. Frank, S. N. Balashov, I. V. Bondarenko, P. Geltenbort, P. Hoghoj, A. V. Kozlov, S. V. Masalovich, and B. P. Toperverg, “Resonant tunneling of UCN through the moving interference filter and experimental test of the UCN dispersion law,” Communication E3-2004-216 (Joint Inst. for Nuclear Research, Dubna, 2004).

    Google Scholar 

  38. V. K. Ignatovich, Physics of Ultracold Neutrons (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  39. A. I. Frank, P. Geltenbort, G. V. Kulin, and A. N. Strepetov, “Experimental verification of the 1/v law for the absorption cross section of ultracold neutrons in natural gadolinium,” JETP Lett. 84, 105–109 (2006).

    Article  Google Scholar 

  40. A. I. Frank, V. I. Bodnarchuk, P. Geltenbort, I. L. Karpikhin, G. V. Kulin, and O. V. Kulina, “Neutron optics of strongly absorbing media and interaction of long-wave neutrons with gadolinium films,” Phys. At. Nucl. 66, 1831–1845 (2003).

    Article  Google Scholar 

  41. I. V. Bondarenko, S. N. Balashov, A. Cimmino, P. Geltenbort, A. I. Frank, P. Hoghoj, A. G. Klein, S. V. Masalovich, and V. G. Nosov, “UCN gravity spectrometry using neutron interference filters for fundamental investigations in neutron optics,” Nucl. Instrum. Methods Phys. Res., Sect. A 440, 591–596 (2000).

    Article  ADS  Google Scholar 

  42. H. Rauch, M. Zawisky, Ch. Stellmach, and P. Geltenbort, “Giant absorption cross section of ultracold neutrons in gadolinium,” Phys. Rev. Lett. 83, 4955–4958 (1999).

    Article  ADS  Google Scholar 

  43. G. V. Kulin, A. N. Strepetov, A. I. Frank, P. Geltenbort, S. V. Goryunov, M. Jentschel, and D. V. Kustov, “New experimental test of dispersion law for very slow neutrons,” Phys. Lett. A 378, 2553–2556 (2014).

    Article  ADS  MATH  Google Scholar 

  44. M. A. Horne and A. Zeilinger, “Fizeau effects for thermal neutrons,” in Neutron Interferometry, Ed. by U. Bonse and H. Rauch (Clarendon, Oxford, 1979), pp. 350–354.

    Google Scholar 

  45. A. G. Klein, G. I. Opat, A. Cimmino, A. Zeilinger, W. Treimer, and R. Gähler, “Neutron propagation in moving matter: the Fizeau experiment with massive particles,” Phys. Rev. Lett. 46, 1551–1554 (1981).

    Article  ADS  Google Scholar 

  46. U. Bonse and A. Rumpf, “Interferometric measurement of neutron Fizeau effect,” Phys. Rev. Lett. 56, 2411–2444 (1986).

    Article  ADS  Google Scholar 

  47. M. A. Horne, A. Zeilinger, A. G. Klein, and G. I. Opat, “Neutron phase shift in moving matter,” Phys. Rev. A 28, 1–6 (1983).

    Article  ADS  Google Scholar 

  48. U. Bonse and A. Rumpf, “Thermal-neutron propagation in moving media,” Phys. Rev. A 37, 1059–1064 (1988).

    Article  ADS  Google Scholar 

  49. A. Peres, “Neutron propagation in moving matter,” Am. J. Phys. 51, 947–950 (1983).

    Article  ADS  Google Scholar 

  50. C. Yeh, “Reflection and transmission of electromagnetic waves by a moving dielectric medium,” J. Appl. Phys. 36, 3513–3517 (1965).

    Article  ADS  Google Scholar 

  51. K. Littrell, S. Werner, and B. Allman, “Neutron interferometry in non-inertial reference frames,” J. Phys. Soc. Jpn. 65 Suppl. A, 98–101 (1996).

    Google Scholar 

  52. K. Tanaka, “Reflection and transmission of electromagnetic waves by a linearly accelerated dielectric slab,” Phys. Rev. A 25, 385–390 (1982).

    Article  ADS  Google Scholar 

  53. R. Neutze and G. E. Stedman, “Detecting the effects of linear acceleration on the optical response of matter,” Phys. Rev. A 58, 82–90 (1998).

    Article  ADS  Google Scholar 

  54. F. V. Kowalski, “Interaction of neutrons with accelerating matter: Test of the equivalence principle,” Phys. Lett. A 182, 335–340 (1993).

    Article  ADS  Google Scholar 

  55. V. G. Nosov and A. I. Frank, “Interaction of slow neutrons with moving matter,” Phys. At. Nucl. 61, 613–623 (1998).

    Google Scholar 

  56. A. I. Frank, P. Geltenbort, G. V. Kulin, D. V. Kustov, V. G. Nosov, and A. N. Strepetov, “Effect of accelerating matter in neutron optics,” JETP Lett. 84, 363–367 (2006).

    Article  ADS  Google Scholar 

  57. A. I. Frank, P. Geltenbort, M. Jentschel, D. V. Kustov, G. V. Kulin, V. G. Nosov, and A. N. Strepetov, “Effect of accelerated matter in neutron optics,” Phys. At. Nucl. 71, 1656–1674 (2008).

    Article  Google Scholar 

  58. A. I. Frank, P. Geltenbort, M. Jentschel, D. V. Kustov, G. V. Kulin, and A. N. Strepetov, “New experiment on the observation of the effect of accelerating matter in neutron optics,” JETP Lett. 93, 361–365 (2011).

    Article  ADS  MATH  Google Scholar 

  59. A. I. Frank, P. Geltenbort, M. Jentschel, G. V. Kulin, D. V. Kustov, and A. N. Strepetov, “Accelerating medium effect as a general wave phenomenon,” J. Phys.: Conf. Ser. 340, 012042 (2012).

    ADS  Google Scholar 

  60. A. I. Frank and V. A. Naumov, “Interaction of waves with a birefringent medium moving with acceleration,” Phys. At. Nucl. 76, 1423–1433 (2013).

    Article  Google Scholar 

  61. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 6th ed. (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  62. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. (Nauka, Moscow, 1982), p. 405 [in Russian].

    Google Scholar 

  63. A. I. Frank, “On the dispersion law of neutrons in accelerated matter,” JETP Lett. 100, 613–614 (2015).

    Article  ADS  Google Scholar 

  64. A. I. Frank, P. Geltenbort, G. V. Kulin, and A. N. Strepetov, “A quantum time lens for ultracold neutrons,” JETP Lett. 78, 188–192 (2003).

    Article  ADS  Google Scholar 

  65. A. M. Kamchatnov, V. G. Nosov, and A. I. Frank, “The depth of penetration of magnetic field into a superconductor and the polarization ratio for UCN,” in Proc. 1st Int. Conf. on Neutron Physics, Kiev, 1987 (TsNIIatominform, Moscow, 1988), Vol. 1, pp. 116–117.

    Google Scholar 

  66. A. V. Kozlov and A. I. Frank, “Dynamic reflection and refraction of neutrons at the boundaries of matter characterized by a variable magnetic induction,” Phys. At. Nucl. 68, 1104–1119 (2005).

    Article  Google Scholar 

  67. G. Badurek, H. Rauch, and J. Summhammer, “Polarized neutron interferometry: A Survey,” Physica B+C 151, 82–92 (1988).

    Article  ADS  Google Scholar 

  68. R. Golub and R. Gähler, “A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering,” Phys. Lett. A 123, 43–48 (1987).

    Article  ADS  Google Scholar 

  69. R. Gähler, R. Golub, and T. Keller, “Neutron resonance spin echo—a new tool for high resolution spectroscopy,” Phys. B 180–181, 899–902 (1992).

    Article  Google Scholar 

  70. W. Besenböck, R. Gähler, P. Hank, R. Kahn, M. Köppe, C.-H. De Novion, W. Petry, and J. Wuttke, “First scattering experiment on MIEZE: a Fourier transform time-of-flight spectrometer using resonance coils,” J. Neutron Res. 7, 65–74 (1998).

    Article  Google Scholar 

  71. A. I. Frank and A. V. Kozlov, “Dynamic reflection and refraction of neutrons,” Phys. B 404, 2550–2552 (2009).

    Article  ADS  Google Scholar 

  72. V. G. Baryshevskii, S. V. Cherepitsa, and A. I. Frank, “Neutron spin interferometry,” Phys. Lett. A 153, 299–302 (1991).

    Article  ADS  Google Scholar 

  73. V. G. Baryshevskii and M. I. Podgoretskii, “Nuclear precession of neutrons,” J. Exp. Theor. Phys. 20, 704 (1965).

    Google Scholar 

  74. A. Abragam, G. L. Bacchella, H. Glätti, P. Meriel, M. Pinot, and J. Piesvaux, “Pseudo magnetic moments of 1H and 51V measured by a new method,” Phys. Rev. Lett. 31, 776–779 (1973).

    Article  ADS  Google Scholar 

  75. F. C. Michel, “Parity nonconservation in nuclei,” Phys. Rev. 133, B329–B349 (1964).

    Article  ADS  Google Scholar 

  76. L. Stodolsky, “Neutron optics and weak currents,” Phys. Lett. B 50, 352–356 (1974).

    Article  ADS  Google Scholar 

  77. M. Forte, B. R. Heckel, N. F. Ramsey, K. Green, G. L. Greene, J. Byrne, and J. M. Pendlebury, “First measurement of parity-nonconserving neutron-spin rotation: The tin isotopes,” Phys. Rev. Lett. 45, 2088–2092 (1980).

    Article  ADS  Google Scholar 

  78. L. Stodolsky, “Parity violation in threshold neutron scattering,” Nucl. Phys. B 197, 213–227 (1982).

    Article  ADS  Google Scholar 

  79. O. P. Sushkov and V. V. Flambaum, “Parity breaking in the interaction of neutrons with heavy nuclei,” Sov. Phys. Usp. 25, 1–12 (1982).

    Article  ADS  Google Scholar 

  80. Neutron Spin Echo, Ed. by F. Mezei (Springer-Verlag, 1980).

  81. I. M. Frank and A. I. Frank, “Applicability of the Fermat principle to the optics of ultracold neutrons,” JETP Lett. 28, 516–517 (1978).

    ADS  Google Scholar 

  82. J. Felber, R. Gähler, C. Rausch, and R. Golub, “Matter waves at a vibrating surface: Transition from quantum-mechanical to classical behavior,” Phys. Rev. A 53, 319–328 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Frank.

Additional information

Original Russian Text © A.I. Frank, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, A.I. Ultracold neutrons and the interaction of waves with moving matter. Phys. Part. Nuclei 47, 647–666 (2016). https://doi.org/10.1134/S1063779616040067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040067

Navigation