Skip to main content
Log in

Physical applications of muon catalysis: Muon capture in hydrogen

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Results of theoretical and experimental research on capture of negative muons in hydrogen are reported with an emphasis on the accompanying phenomenon of muon catalysis in hydrogen and subtleties of the experimental method. A conclusion is drawn that precise determination of the capture rate is important for refining the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich and S. S. Gershtein, “Nuclear reactions in cold hydrogen. I. Mesonic catalysis,” Sov. Phys. Usp. 3, 593–623 (1961).

    Article  ADS  Google Scholar 

  2. S. Cohen, D. L. Judd, and R. J. Riddell, “Mumesonic molecules. I. Three-body problem,” Phys. Rev. 119 (1), 384–397 (1960).

    Article  ADS  Google Scholar 

  3. L. Bracci and G. Fiorentini, “Mesic molecules and muon catalysed fusion,” Phys. Rep. 86, 169–216 (1982).

    Article  ADS  Google Scholar 

  4. S. S. Gershtein, Yu. V. Petrov, and L. I. Ponomarev, “Muon catalysis and nuclear breeding,” Sov. Phys. Usp. 33, 591–615 (1990).

    Article  ADS  Google Scholar 

  5. L. I. Men’shikov and L. N. Somov, “Current status of muon-catalyzed nuclear fusion,” Sov. Phys. Usp. 33, 616–646 (1990).

    Article  ADS  Google Scholar 

  6. W. H. Breunlich, P. Kammel, J. S. Cohen, and M. Leon, “Muon-Catalyzed Fusion,” Annu. Rev. Nucl. Part. Sci. 39 1, 311–356 (1989).

    Article  ADS  Google Scholar 

  7. S. S. Gershtein, “Ya. B. Zel’dovich’s contribution to modern particle physics,” Phys. Usp. 47, 845–852 (2004).

    Article  ADS  Google Scholar 

  8. F. C. Frank, “Hypothetical alternative energy sources for the “second meson” events,” Nature 160, 525–527 (1947).

    Article  ADS  Google Scholar 

  9. A. D. Sakharov, “Passive mesons,” FIAN Report (1948).

    Google Scholar 

  10. Ya. B. Zel’dovich, “Reactions induced by m-mesons in hydrogen,” Dokl. Akad. Nauk SSSR 95 3, 493–499 (1954).

    ADS  Google Scholar 

  11. L. W. Alvarez, H. Bradner, F. S. Crawford, J. A. Crawford, P. Falk-Vairant, M. L. Good, J. D. Gow, A. H. Rosenfeld, F. Solmitz, M. L. Stevenson, H. K. Ticho, and R. D. Tripp, “Catalysis of nuclear reactions by μ mesons,” Phys. Rev. 105 3, 1127–1128 (1957).

    Article  ADS  Google Scholar 

  12. Ya. B. Zel’dovich and A. D. Sakharov, “On reactions induced by μ mesons in hydrogen,” Zh. Eksp. Teor. Fiz., Pis’ma Red. 32, 947–949 (1957).

    Google Scholar 

  13. S. S. Gershtein, “Transitions between hyperfine structure levels in μ-mesic hydrogen,” JETP 7, 318 (1958).

    Google Scholar 

  14. Ya. B. Zel’dovich and S. S. Gershtein, “Formation of hydrogen mesic molecules,” JETP 8, 452 (1958).

    Google Scholar 

  15. Ya. B. Zel’dovich, “On the decay of charged π mesons,” Dokl. Akad. Nauk SSSR 97 3, 421–424 (1954).

    Google Scholar 

  16. V. P. Dzhelepov, P. F. Ermolov, E. A. Kushnirenko, V. I. Moskalev, and S. S. Gershtein, “Experimental investigation of μ-mesic atom processes in gaseous hydrogen,” JETP 15, 306 (1962).

    Google Scholar 

  17. R. P. Feynman and M. Gell-Mann, “Theory of the Fermi interaction,” Phys. Rev. 109, 193–198 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. E. C. G. Sudarshan and R. E. Marshak, “Chirality invariance and the universal Fermi interaction,” Phys. Rev. 109, 1860–1862 (1958).

    Article  ADS  Google Scholar 

  19. V. P. Dzhelepov and V. V. Fil’chenkov, “Experimental investigation of μ-atomic and μ-molecular processes in hydrogen on the JINR synchrocyclotron,” At. Energ. 55, 819–842 (1983).

    Article  Google Scholar 

  20. V. P. Dzhelepov and V. V. Fil’chenkov, “Experimental investigation of resonant formation of ddμ and dtμ molecules and deuterium and tritium nuclear fusion reactions catalyzed by negative muons,” in 1983 A. F. Ioffe Memorial Readings (Nauka, Leningrad, 1985) [in Russian].

    Google Scholar 

  21. V. P. Dzhelepov, P. F. Ermolov, Yu. V. Katyshev, V. I. Moskalev, V. V. Fil’chenkov, and M. Friml, “Catalysis of the d + d3He + n fusion reaction by negative muons,” JETP 19, 1376 (1964).

    Google Scholar 

  22. V. P. Dzhelepov, P. F. Ermolov, and V. V. Fil’chenkov, “Scattering of pμ atoms by protons,” JETP 22, 275 (1966).

    ADS  Google Scholar 

  23. V. P. Dzhelepov, P. F. Ermolov, V. I. Moskalev, V. V. Fil’chenkov, and M. Friml, “Elastic scattering of dμ mesic atoms on protons, deuterons, and complex nuclei,” JETP 20, 841 (1965).

    Google Scholar 

  24. V. P. Dzhelepov, P. F. Ermolov, V. I. Moskalev, and V. V. Fil’chenkov, “Catalysis by negative muons of the nuclear reactions dμ + p → 3He + μ and dμ + dt + p + μ and formation of the molecules pdμ and ddμ in gaseous hydrogen,” JETP 23, 820 (1966).

    ADS  Google Scholar 

  25. E. A. Vesman, “Concerning one possible mechanism of production of the mesic-molecular ion (ddμ)±,” JETP Lett. 5, 91 (1967).

    ADS  Google Scholar 

  26. V. M. Bystritsky, V. P. Dzhelepov, P. F. Ermolov, K. O. Oganesyan, M. N. Omel’yanenko, S. Yu. Porokhovoi, V. S. Roganov, A. I. Rudenko, and V. V. Fil’chenkov, “Measurement of the muons capture rate in gaseous hydrogen,” JETP 39, 19 (1974).

    ADS  Google Scholar 

  27. A. A. Quaranta, A. Bertin, G. Matone, F. Palmonari, G. Torelli, P. Dalpiaz, A. Placci, and E. Zavattini, “Muon capture in gaseous hydrogen,” Phys. Rev. 177 5, 2118–2132 (1969).

    Article  ADS  Google Scholar 

  28. V. M. Bystritsky, V. P. Dzhelepov, V. I. Petrukhin, A. I. Rudenko, V. M. Suvorov, V. V. Fil’chenkov, G. Chemnitz, N. N. Khovansky, and B. A. Khomenko, “Direct measurement of the rates of formation of the molecules ppμ and pdμ in gaseous hydrogen,” JETP 43, 606 (1976).

    ADS  Google Scholar 

  29. V. M. Bystritsky, V. P. Dzhelepov, V. I. Petrukhin, A. I. Rudenko, V. M. Suvorov, V. V. Fil’chenkov, G. Chemnitz, N. N. Khovansky, and B. A. Khomenko, “Spin states of dμ atoms in gaseous hydrogen and measurement of the fusion rate in pdμ molecule,” JETP 44, 881 (1976).

    ADS  Google Scholar 

  30. V. M. Bystritsky, V. P. Dzhelepov, V. I. Petrukhin, A. I. Rudenko, V. M. Suvorov, V. V. Fil’chenkov, N. N. Khovansky, and B. A. Khomenko, “Muon transfer from hydrogen to helium,” JETP 57, 728 (1983).

    Google Scholar 

  31. V. M. Bystritsky, V. P. Dzhelepov, V. I. Petrukhin, A. I. Rudenko, V. M. Suvorov, V. V. Fil’chenkov, G. Chemnitz, N. N. Khovansky, and B. A. Khomenko, “Experimental investigation of mesoatomic and mesomolecular processes in gaseous hydrogen,” in Mesons in Matter: Proceeding of the International Symposium, Dubna, 1977 (Joint Institute for Nuclear Research, Dubna, 1977), pp. 193–198 [in Russian].

    Google Scholar 

  32. V. M. Bystritsky, V. P. Dzhelepov, V. I. Petrukhin, A. I. Rudenko, L. N. Somov, V. M. Suvorov, V. V. Fil’chenkov, G. Chemnitz, N. N. Khovansky, B. A. Khomenko, and D. Horvath, “Resonance in the rate of production of ddμ mesic molecules in gaseous deuterium,” JETP 49, 232 (1979).

    ADS  Google Scholar 

  33. L. I. Ponomarev, “Mesons in matter - Workshop R,” in Proceeding of the Seventh International Conference on High-Energy Physics and Nuclear Structure, Zurich, Switzerland, 29 August–2 September, 1977 (Birkhäuser Basel, 1977), pp. 403–409.

    Google Scholar 

  34. V. M. Bystritsky, V. P. Dzhelepov, Z. V. Ershova, V. G. Zinov, V. K. Kapyshev, S. Sh. Mukhamet-Galeeva, V. S. Nadezhdin, L. A. Rivkis, A. I. Rudenko, V. I. Satarov, N. V. Sergeeva, L. N. Somov, V. A. Stolupin, and V. V. Fil’chenkov, “Experimental investigation of muon catalysis of the fusion of deuterium and tritium nuclei,” JETP 51, 877 (1981).

    Google Scholar 

  35. V. R. Bom, A. M. Demin, D. L. Demin, C. W. E. Van Eijk, M. P. Faifman, V. V. Filchenkov, A. N. Golubkov, N. N. Grafov, S. K. Grishechkin, K. I. Gritsaj, V. G. Klevtsov, A. D. Konin, A. V. Kuryakin, S. V. Medved’, R. K. Musyaev, V. V. Perevozchikov, A. I. Rudenko, S. M. Sadetsky, Yu. I. Vinogradov, A. A. Yukhimchuk, S. A. Yukhimchuk, V. G. Zinov, and S. V. Zlatoustovskii, “Experimental investigation of muon-catalyzed dt fusion in wide ranges of D/T mixture conditions,” J. Exp. Theor. Phys. 100, 663–687 (2005).

    Article  ADS  Google Scholar 

  36. Y. P. Averin, V. R. Bom, A. M. Demin, D. L. Demin, A. E. Drebushko, V. P. Dzhelepov, C. W. E. van Eijk, V. V. Filchenkov, A. N. Golubkov, N. N. Grafov, V. G. Grebinnik, S. K. Grishechkin, V. G. Klevtsov, A. D. Konin, A. A. Kukolkin, S. V. Medved’, A. B. Modenov, V. A. Nazarov, V. I. Pryanichnikov, V. I. Rozhkov, A. I. Rudenko, S. M. Sadetsky, G. G. Semenchuk, V. T. Sidorov, Yu. V. Smirenin, I. I. Sukhoi, V. V. Travkin, N. I. Voropaev, A. A. Yukhimchuk, V. G. Zinov, and S. V. Zlatoustovskii, “Experimental results on muon catalyzed dt fusion in H/D/T mixture,” Hyperfine Interact. 138, 249–253 (2001).

    Article  ADS  Google Scholar 

  37. B. Pontecorvo, “Nuclear capture of mesons and the meson decay,” Phys. Rev. 72 246–247 (1947); G. Puppi, “Sui mesoni dei raggi cosmic,” Nuovo Cimento 5, 587–588 (1948); T. D. Lee, M. Rosenbluth, and C. N. Yang, “Interaction of Mesons with nucleons and light particles,” Phys. Rev. 75, 905 (1949).

    Article  ADS  Google Scholar 

  38. V. A. Andreev, T. I. Banks, T. A. Case, D. B. Chitwood, S. M. Clayton, K. M. Crowe, J. Deutsch, J. Egger, S. J. Freedman, V. A. Ganzha, T. Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, B. Lauss, K. L. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, C. S. Ozben, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, V. Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, and P. Winter, “Measurement of the muon capture rate in hydrogen gas and determination of the proton’s pseudoscalar coupling gP,” Phys. Rev. Lett. 99, 032002 (2007).

    Article  ADS  Google Scholar 

  39. V. A. Andreev, T. I. Banks, R. M. Carey, T. A. Case, S. M. Clayton, K. M. Crowe, J. Deutsch, J. Egger, S. J. Freedman, V. A. Ganzha, T. Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, B. Lauss, K. L. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, V. Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, and P. Winter, “Measurement of muon capture on the proton to 1% precision and determination of the pseudoscalar coupling g uP ,” Phys. Rev. Lett. 110, 012504 (2013).

    Article  ADS  Google Scholar 

  40. G. Bardin, J. Duclos, A. Magnon, J. Martino, A. Richter, E. Zavattini, A. Bertin, M. Piccinini, A. Vitale, and D. Measday, “A novel measurement of the muon capture rate in liquid hydrogen by the lifetime technique,” Nucl. Phys. A 352, 365–378 (1981).

    Article  ADS  Google Scholar 

  41. G. Bardin, J. Duclos, A. Magnon, J. Martino, A. Richter, E. Zavattini, A. Bertin, M. Piccinini, and A. Vitale, “Measurement of the ortho–para transition rate in the molecule and deduction of the pseudoscalar coupling constant ” Phys. Lett. 104, 320–324.

  42. D. D. Bakalov, M. P. Faifman, L. I. Ponomarev, and S. I. Vinitsky, “Capture and ortho–para transitions in the muonic molecule,” Nucl. Phys. A 384 3, 302–322 (1982).

    Article  ADS  Google Scholar 

  43. A. A. Vorobyov, “Precision Measurement of the rate of nuclear muon capture in the muonic hydrogen atom and the determination of the pseudoscalar form factor of the nucleon,” Phys. At. Nucl. 72 1, 128–140 (2009).

    Article  MathSciNet  Google Scholar 

  44. P. Kammel and K. Kubodera, “Precision muon capture,” Annual Review of Nuclear and Particle Science 60, 327–353 (2010).

    Article  ADS  Google Scholar 

  45. E. Zavattini, “Muon capture”, in Muon Physics, Ed. by V. W. Huges and C. S. Wu (Academic Press, New York, 1975), Vol. 2., p. 219.

    Chapter  Google Scholar 

  46. N. C. Mukhopadhyay, “Nuclear muon capture,” Phys. Rep. 30, 1–144 (1977).

    Article  ADS  Google Scholar 

  47. L. Grenacs, “Induced weak currents in nuclei,” Annu. Rev. Nucl. Part. Sci. 35, 455–500 (1985).

    Article  ADS  Google Scholar 

  48. D. F. Measday, “The nuclear physics of muon capture,” Phys. Rep. 354, 243–409 (2001).

    Article  ADS  Google Scholar 

  49. J. Govaerts and J. L. Lucio-Martinez, “Nuclear muon capture on the proton and 3He within the Standard Model and beyond,” Nucl. Phys. A 678, 110–146 (2000).

    Article  ADS  Google Scholar 

  50. T. Gorringe and H. W. Fearing, “Induced pseudoscalar coupling of the proton weak interaction,” Rev. Mod. Phys. 76, 31–91 (2003).

    Article  ADS  Google Scholar 

  51. H. Primakoff, “Theory of muon capture,” Rev. Mod. Phys. 31, 802–822 (1959).

    Article  ADS  MATH  Google Scholar 

  52. C. W. Kim and H. Primakoff, “Application of the Goldberger–Treiman relation to the beta decay of complex nuclei,” Phys. Rev. 139, B1447 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  53. M. L. Goldberger and S. B. Treiman, “Decay of the pi meson,” Phys. Rev. 110 1178–1184 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  54. L. Wolfenstein, “Virtual pion effects in μ-meson capture,” Nuovo Cimento Ser. 10 8, 882–887 (1958).

    Article  Google Scholar 

  55. Y. Nambu, “Axial vector current conservation in weak interactions,” Phys. Rev. Lett. 4, 380–382 (1960); Y. Nambu and D. Lurie, “Chirality conservation and soft pion production,” Phys. Rev. 125, 1429–1436 (1962).

    Article  ADS  Google Scholar 

  56. M. Gell-Mann and M. Levy, “The axial vector current in beta decay,” Nuovo Cimento, 16, 705–726 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  57. S. L. Adler, “Calculation of the axial-vector coupling constant renormalization in beta decay,” Phys. Rev. Lett. 14, 1051–1055 (1965); S. L. Adler, “Sum rules for the axial-vector coupling-constant renormalization in beta decay,” Phys. Rev. 140, 736–747 (1965).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. A. I. Vainshtein and V. I. Zakharov, “Partial conservation of axial current in processes involving “soft” mesons,” Sov. Phys. Usp. 13, 73–100 (1970).

    Article  ADS  Google Scholar 

  59. Chou Kuang-chao, “On the pseudovector current and lepton decays of baryons and mesons,” JETP 12, 492 (1961).

    Google Scholar 

  60. S. L. Adler and Y. Dothan, “Low-energy theorem for the weak axial-vector vertex,” Phys. Rev. 151, 1267–1277 (1966).

    Article  ADS  Google Scholar 

  61. L. Wolfenstein, in High-Energy Physics and Nuclear Structure, Ed. by S. Devons (Plenum, New York, 1970).

  62. P. K. Kabir, “The ortho-ppμ molecule and muon absorption in liquid hydrogen,” Z. Phys. 191, 447–460 (1966).

    Article  ADS  Google Scholar 

  63. J. Frazier and C. W. Kim, “Muon capture and the hypothesis of partially conserved axial-vector current,” Phys. Rev. 177, 2568–2573 (1969).

    Article  ADS  Google Scholar 

  64. A. Santisteban and R. Pascual, “Muon capture by hydrogen and 3He,” Nucl. Phys. A 260, 392–400 (1976).

    Article  ADS  Google Scholar 

  65. T. I. Banks, “A measurement of the rate of muon capture in hydrogen gas and determination of the proton’s induced pseudoscalar coupling gp,” PhD Thesis (University of California, Berkley, 2007).

    Google Scholar 

  66. E. Fermi and E. Teller, “The capture of negative mesotrons in matter,” Phys. Rev. 72, 399–408 (1947).

    Article  ADS  MATH  Google Scholar 

  67. A. S. Wightman, “Moderation of negative mesons in hydrogen I: Moderation from high energies to capture by an H2 molecule,” Phys. Rev. 77, 521–528 (1950).

    Article  ADS  Google Scholar 

  68. S. S. Gershtein, “On the probability of meson capture at various mesic atom levels,” Zh. Eksp. Teor. Fiz. 39, 1170–1172 (1960).

    Google Scholar 

  69. M. Leon and H. A. Bethe, “Negative meson absorption in liquid hydrogen,” Phys. Rev. 127, 636–647 (1962).

    Article  ADS  Google Scholar 

  70. L. Bracci and G. Fiorentini, “Coulomb de-excitation of mesic hydrogen,” Nuovo Cimento A 43, 9–30 (1978).

    Article  ADS  Google Scholar 

  71. G. Y. Korenman and S. I. Rogovaya, “Primary populations in mesonic hydrogen atoms,” J. Phys. B: At. Mol. Phys. 13, 641–653 (1980).

    Article  ADS  Google Scholar 

  72. V. E. Markushin, “Light μ−atoms in liquid and gaseous hydrogen and deuterium,” JETP. 53, 16 (1981).

    Google Scholar 

  73. J. S. Cohen, “Slowing down and capture of negative muons by hydrogen: Classical-trajectory Monte Carlo calculation,” Phys. Rev. A 27, 167–179 (1983).

    Article  ADS  Google Scholar 

  74. V. V. Balashov, V. K. Dolinov, G. Ya. Korenman, S. V. Leonova, I. V. Moskalenko, and V. P. Popov, “Slowing-down and Coulomb capture of negative muons in the hydrogen–helium isotope mixture,” Muon Catal. Fusion 2, 105–116 (1988).

    Google Scholar 

  75. G. Ya. Korenman, V. P. Popov, and G. A. Fesenko, “Coulomb capture of negative mesons and the formation of mesic atoms in molecular hydrogen,” Muon Catal. Fusion 7, 179–194 (1992).

    Google Scholar 

  76. H. Anderhub, J. Bocklin, M. Devereux, F. Dittus, R. F. Marques, H. Hofer, H. K. Hofer, F. Kottmann, O. Pitzurra, P.-G. Seiler, D. Taqqu, J. Unternahrer, M. Walchli, and Ch. Tschalar, “Slowing-down of negative muons and formation of muonic hydrogen in hydrogen gas below 1 Torr,” Phys. Lett. B 101, 151–154 (1981).

    Article  ADS  Google Scholar 

  77. P. Hauser, F. Kottmann, C. Luchinger, and R. Schaeren, “Slowing down of negative muons in gaseous H2 and determination of the stopping power,” in Muonic Atoms and Molecules (Birkhäuser, Basel, 1993), pp. 235–241.

    Google Scholar 

  78. G. Ya. Korenman and V. P. Popov, in Proceedings of the International Symposium on Problems of Interaction of Muons and Pions with Matter, Dubna, 30 June–4 July 1987 (Joint Inst. for Nuclear Research, Dubna, 1987) [in Russian].

    Google Scholar 

  79. F. Kottmann, “Kinetic energies at the formation and cascade of μp-atoms,” in Muonic Atoms and Molecules (Birkhäuser, Basel, 1993), pp. 219–233.

    Chapter  Google Scholar 

  80. V. E. Markushin, “Atomic cascade in muonic hydrogen and the problem of kinetic-energy distribution in the ground state,” Phys. Rev. A 50, 1137–1143 (1994).

    Article  ADS  Google Scholar 

  81. D. J. Abbott, G. F. Chen, P. Guss, A. D. Hancock, J. B. Kraiman, R. T. Siegel, W. F. Vulcan, D. W. Viel, R. E. Welsh, C. Petitjean, A. Zehnder, W. H. Breunlich, M. Cargnelli, P. Kammel, A. Scrinzi, J. Marton, J. Zmeskal, J. J. Reidy, H. L. Woolverton, F. J. Hartmann, A. Adamczak, V. E. Markushin, and V. S. Melezhik, “Diffusion of muonic deuterium and hydrogen atoms,” Phys. Rev. A 55, 214–229 (1997).

    Article  ADS  Google Scholar 

  82. A. Werthmuller, A. Adamczak, R. Jacot-Guillarmod, F. Mulhauser, C. Piller, L. A. Schaller, L. Schellenberg, H. Schneuwly, Y.-A. Thalmann, and S. Tresch, “Transfer of negative muons from hydrogen to oxygen,” Hyperfine Interact. 103, 147–155 (1996); A. Werthmuller, A. Adamczak, R. Jacot-Guillarmod, F. Mulhauser, L. A. Schaller, L. Schellenberg, H. Schneuwly, Y.-A. Thalmann, and S. Tresch, “Energy dependence of the charge exchange reaction from muonic hydrogen to oxygen,” Hyperfine Interact. 116 (1–4), 1–16 (1998).

    Article  ADS  Google Scholar 

  83. L. Bracci, C. Chiccoli, P. Pasini, G. Fiorentini, V. S. Melezhik, and J. Wozniak, “Collision-induced spin flip in isotopes of muonic hydrogen,” Phys. Lett. A 134, 435–439 (1989).

    Article  ADS  Google Scholar 

  84. A. Adamczak, M. P. Faifman, L. I. Ponomarev, V. I. Korobov, V. S. Melezhik, R. T. Siegel, and J. Wozniak, “Atlas of cross sections for scattering of muonic hydrogen atoms on hydrogen isotope molecules,” At. Data Nucl. Data Tables 62, 255–344 (1996).

    Article  ADS  Google Scholar 

  85. G. F. Bin’ko, V. N. Grebenev, Yu. B. Gurov, V. P. Dzhelepov, Yu. P. Dobretsov, V. G. Zinov, V. G. Kirillov-Ugryumov, A. A. Maloletnev, A. L. Mikaelyan, A. P. Pichugin, V. V. Fil’chenkov, and N. N. Khal’ko, “Measurement of the residual polarization of negative muons in gaseous deuterium at a pressure of 10 atm,” JETP Lett. 49, 544 (1989).

    ADS  Google Scholar 

  86. V. P. Dzhelepov, V. G. Zinov, S. A. Ivanovskii, S. B. Karpov, A. D. Konin, A. I. Malyshev, L. Martsish, D. G. Merkulov, A. I. Rudenko, V. V. Fil’chenkov, and O. A. Yurin, “Experimental study of spin effects in the resonant formation of muonic deuterium molecules,” JETP Lett. 53, 604 (1991).

    ADS  Google Scholar 

  87. A. Bertin, I. Massa, M. Piccinini, G. Vannini, A. Vitale, and G. Matone, “Triplet state lifetime for (pμ) 1S muonic atoms in gaseous hydrogen,” Phys. Lett. B 88, 185–188 (1979).

    Article  ADS  Google Scholar 

  88. A. Bertin, I. Massa, M. Piccinini, A. Vacchi, G. Vannini, and A. Vitale, “New measurement of the cross section for the elastic scattering process pμ + ppμ + p in gaseous hydrogen at 26 atmospheres,” Phys. Lett. B 78, 355–359 (1978).

    Article  ADS  Google Scholar 

  89. A. Adamczak and J. Gronowski, “Diffusion radius of muonic hydrogen atoms in HD gas,” Eur. Phys. J. D 41, 493–497 (2007).

    Article  ADS  Google Scholar 

  90. M. P. Faifman, “Nonresonant formation of hydrogen isotope mesic molecules,” Muon Catal. Fusion 4, 341–364 (1989).

    Google Scholar 

  91. L. I. Ponomarev and M. P. Faifman, “Calculation of rates of formation of μ-mesic hydrogen molecules,” JETP 44, 886 (1976).

    ADS  Google Scholar 

  92. E. J. Bleser, E. W. Anderson, L. M. Lederman, S. L. Meyer, J. L. Rosen, J. E. Rothberg, and I. T. Wang, “Muonic molecules in liquid hydrogen,” Phys. Rev. 132, 2679–2691 (1963).

    Article  ADS  Google Scholar 

  93. G. Conforto, C. Rubbia, E. Zavattini, and S. Focardi, “Direct measurement of μ-mesonic molecule formation rates in liquid hydrogen,” Nuovo Cimento A 33, 1001–1019 (1964).

    Article  Google Scholar 

  94. Yu. G. Budyashov, P. F. Ermolov, V. G. Zinov, A. D. Konin, A. I. Mukhin, and K. O. Oganesyan, Preprint OIYaI R15–3964 (Joint Inst. for Nuclear Research, Dubna, 1968) [in Russian].

    Google Scholar 

  95. F. Mulhauser, J. L. Beveridge, G. M. Marshall, J. M. Bailey, G. A. Beer, P. E. Knowles, G. R. Mason, A. Olin, M. C. Fujiwara, T. M. Huber, R. Jacot-Guillarmod, P. Kammel, J. Zmeskal, S. K. Kim, A. R. Kunselman, V. E. Markushin, C. J. Martoff, and C. Petitjean, “Measurement of muon transfer from proton to triton and ppμ molecular formation in solid hydrogen,” Phys. Rev. A 53, 3069–3080 (1996).

    Article  ADS  Google Scholar 

  96. M. Shimizu, Y. Mizuno, and T. Izuyama, “Molecular processes induced by μ− mesons in hydrogen bubble chamber. I–Transfer process of μ− meson from proton to deuteron,” Prog. Theor. Phys. 20, 777–779 (1958).

    Article  ADS  Google Scholar 

  97. S. Cohen, D. L. Judd, and R. J. Riddell, “μ Mesonic molecular ions and nuclear catalysis,” Phys. Rev. 110, 1471–1472 (1958).

    Article  ADS  Google Scholar 

  98. V. B. Belyaev, S. S. Gershtein, B. N. Zakhar’ev, and S. P. Lomnev, “μ-Mesomolecular processes in hydrogen,” Zh. Eksp. Teor. Fiz. 37, 1652–1662 (1959).

    Google Scholar 

  99. A. Adamczak, C. Chiccoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I. Ponomarev, and J. Wozniak, “Muon transfer rates in hydrogen isotope mesic atom collisions,” Phys. Lett. B 285, 319–324 (1992).

    Article  ADS  Google Scholar 

  100. A. Bertin, M. Bruno, A. Vitale, A. Placci, and E. Zavattini, “Measurement of the rate γe for the reaction pμ + ddμ + p at room temperature,” Lett. Nuovo Cimento, Ser. 2, 4, 449–453 (1972).

    Article  Google Scholar 

  101. E. J. Bleser, E. W. Anderson, L. M. Lederman, S. L. Meyer, J. L. Rosen, J. E. Rothberg, and I. T. Wang, “Muonic molecules in liquid hydrogen,” Phys. Rev. 132, 2679–2691 (1963).

    Article  ADS  Google Scholar 

  102. C. Petitjean, “The μCF experiments at PSI—a conclusive review,” Hyperfine Interact. 138, 191–201 (2001).

    Article  ADS  Google Scholar 

  103. I. V. Falomkin, A. I. Filippov, M. M. Kulyukin, B. Pontecorvo, Yu. A. Scherbakov, R. M. Sulyaev, V. M. Tsupko-Sitnikov, and O. A. Zaimidoroga, “Measurement of the μ + 3He → 3H + reaction rate: Final results,” Phys. Lett. 3, 229229 (1963).

    Article  Google Scholar 

  104. R. H. Hildebrand, “Observation of μ-capture in liquid hydrogen,” Phys. Rev. Lett. 8, 34–37 (1962).

    Article  ADS  Google Scholar 

  105. L. Schellenberg, “Recent experiments on muon transfer in gas mixtures,” Hyperfine Interact. 82, 513–517 (1993).

    Article  ADS  Google Scholar 

  106. T. Suzuki, D. F. Measday, and J. P. Roalsvig, “Total nuclear capture rates for negative muons,” Phys. Rev. C: Nucl. Phys. 35, 2212–2224 (1987).

    Article  ADS  Google Scholar 

  107. L. Schellenberg, “Muon transfer in gas mixtures with hydrogen,” Muon Catal. Fusion 5, 73–85 (1990).

    Google Scholar 

  108. S. Weinberg, “Muon absorption in liquid hydrogen,” Phys. Rev. Lett. 4, 575–578 (1960).

    Article  ADS  Google Scholar 

  109. Ya. B. Zel’dovich and S. S. Gershtein, “The universal Fermi interaction and the capture of the μ meson by the proton,” JETP 8, 570 (1959).

    Google Scholar 

  110. A. Halpern, “A μ capture rate in (pμp),” Phys. Rev. 135 (1A), 34–35 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  111. W. R. Wessel and P. Phillipson, “Quantum mechanics of the (p-μ-p)+ molecular ion,” Phys. Rev. Lett. 13, 23–25 (1964).

    Article  ADS  Google Scholar 

  112. D. D. Bakalov and S. I. Vinitskii, “Spin effects in the three-body problem with electromagnetic interaction: Hyperfine structure of energy levels in the ppμ mesomolecule,” Yad. Fiz. 32, 720–733(1980).

    Google Scholar 

  113. D. D. Bakalov, S. I. Vinitskii, and V. S. Melezhik, “Hyperfine structure of energy levels in μ-mesomolecules of hydrogen isotopes,” JETP 52, 820 (1980).

    ADS  Google Scholar 

  114. E. Bertolini, A. Citron, G. Gialanella, S. Focardi, A. Mukhin, C. Rubbia, and S. Saporetti, “Determination of the μ–total capture rate in liquid hydrogen,” in Proceeding of the 11th International Conference on High-Energy Physics, CERN, 4–11 July 1962 (Geneva, CERN, 1962), pp. 421–423.

    Google Scholar 

  115. J. E. Rothberg, E. W. Anderson, E. J. Bleser, L. M. Lederman, S. L. Meyer, J. L. Rosen, and I. T. Wang, “Muon capture in hydrogen,” Phys. Rev. 132, 2664–2678 (1963).

    Article  ADS  Google Scholar 

  116. V. M. Bystritsky, V. P. Dzhelepov, P. F. Ermolov, K. O. Oganesyan, M. N. Omel’yanenko, S. Yu. Porokhovoi, and V. V. Fil’chenkov, “Increase in the coincidence and anticoincidence efficiency with CsJ(Tl) scintillators,” Prib. Tekh. Eksp. No. 4, 86–88 (1971).

    Google Scholar 

  117. M. P. Balandin, V. M. Grebenyuk, V. G. Zinov, A. D. Konin, and A. N. Ponomarev, “Measurement of the lifetime of the positive muon,” JETP 40, 811 (1975).

    ADS  Google Scholar 

  118. J. Duclos, A. Magnon, and J. Picard, “A new measurement of the muon lifetime,” Phys. Lett. B 47, 491–493 (1973); G. Bardin, J. Duclos, J. Joseph, A. Magnon, J. Martino, and E. Zavattini, “Total muon capture rate in 6Li and 7Li,” Phys. Lett. 79, 52–54 (1978).

    Article  ADS  Google Scholar 

  119. J. H. D. Clark, D. S. Armstrong, T. P. Gorringe, M. D. Hasinoff, P. M. King, T. J. Stocki, S. Tripathi, D. H. Wright, and P. A. Zolnierczuk, “Ortho–para transition rate in μ molecular hydrogen and the proton’s induced pseudoscalar coupling gP,” Phys. Rev. Lett. 96 7, 073401 (2006).

    Article  ADS  Google Scholar 

  120. V. Bernard, L. Elouadrhiri, and U.-G. Meissner, “Axial structure of the nucleon,” J. Phys. G 28, R1–R35 (2002).

    Article  ADS  Google Scholar 

  121. H. W. Fearing, R. Lewis, N. Mobed, and S. Scherer, “Muon capture by a proton in heavy baryon chiral perturbation theory,” Phys. Rev. D 56, 1783–1791 (1997).

    Article  ADS  Google Scholar 

  122. J. Gasser and H. Leutwyler, “Chiral perturbation theory: Expansions in the mass of the strange quark,” Nucl. Phys. B 250, 465–516 (1985).

    Article  ADS  Google Scholar 

  123. E. Jenkins and A. V. Manohar, “Baryon chiral perturbation theory using a heavy fermion Lagrangian,” Phys. Lett. B 255, 558–562 (1991).

    Article  ADS  Google Scholar 

  124. T. Fuchs and S. Scherer, “Pion electroproduction, partially conserved axial-vector current, chiral Ward identities, and the axial form factor revisited,” Phys. Rev. C 68, 055501 (2003).

    Article  ADS  Google Scholar 

  125. V. Bernard, N. Kaiser, and U.-G. Meissner, “QCD accurately predicts the induced pseudoscalar coupling constant,” Phys. Rev. D 50, 6899–6901 (1994).

    Article  ADS  Google Scholar 

  126. N. Kaiser, “Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory,” Phys. Rev. C 67, 027002 (2003).

    Article  ADS  Google Scholar 

  127. P. Mergell, U.-G. Meissner, and D. Drechsel, “Dispersion-theoretical analysis of the nucleon electromagnetic form factors,” Nucl. Phys. A 596, 367–396 (1996).

    Article  ADS  Google Scholar 

  128. W.-M. Yao et al. (Particle Data Group), Review of Particle Physics, J. Phys. G. 33, 1.

  129. A. Gurtu et al., Review of Particle Physics, Eur. Phys. J. C 3, 1–783 (1998).

    Article  Google Scholar 

  130. A. Czarnecki, W. J. Marciano, and A. Sirlin, “Electroweak radiative corrections to muon capture,” Phys. Rev. Lett. 99, 032003 (2007).

    Article  ADS  Google Scholar 

  131. V. Bernard, T. R. Hemmert, and U.-G. Meissner, “Ordinary and radiative muon capture on the proton and the pseudoscalar form factor of the nucleon,” Nucl. Phys. A 686, 290–316 (2001).

    Article  ADS  Google Scholar 

  132. P. Winter, Bull. Am. Phys. Soc. 57 (3) (2012).

  133. D. B. Chitwood, T. I. Banks, M. J. Barnes, S. Battu, R. M. Carey, S. Cheekatmalla, S. M. Clayton, J. Crnkovic, K. M. Crowe, P. T. Debevec, S. Dhamija, W. Earle, A. Gafarov, K. Giovanetti, T. P. Gorringe, F. E. Gray, M. Hance, D. W. Hertzog, M. F. Hare, P. Kammel, B. Kiburg, J. Kunkle, B. Lauss, I. Logashenko, K. R. Lynch, R. McNabb, J. P. Miller, F. Mulhauser, C. J. G. Onderwater, C. S. Ozben, Q. Peng, C. C. Polly, S. Rath, B. L. Roberts, V. Tishchenko, G. D. Wait, J. Wasserman, D. M. Webber, P. Winter, and P. A. Zolnierczuk, “Improved measurement of the positive-muon lifetime and determination of the Fermi constant,” Phys. Rev. Lett. 99, 032001 (2007).

    Article  ADS  Google Scholar 

  134. V. A. Ganzha, P. A. Kravtsov, O. E. Maev, G. N. Schapkin, G. G. Semenchuk, V. Trofimov, A. A. Vasilyev, M. E. Vznuzdaev, S. M. Clayton, P. Kammel, B. Kiburg, M. Hildebrandt, C. Petitjean, T. I. Banks, and B. Lauss, “A circulating hydrogen ultra-high purification system for the MuCap experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 578, 485–497 (2007).

    Article  ADS  Google Scholar 

  135. I. Alekseev, E. Arkhipov, S. Bondarenko, O. Fedorchenko, V. Ganzha, P. Kravtsov, V. Trofimov, A. Vasilyev, T. Vasyanina, and M. Vznuzdaev, “Experimental results of hydrogen distillation at the deuterium removal unit of the MuCAP experiment,” Preprint No. 2702, PIYaF RAN (St. Petersburg Inst. of Nuclear Physics, Russian Academy of Sciences, 2006).

    Google Scholar 

  136. S. Knaack, “A determination of the formation rate of muonic hydrogen molecules in the MuCap experiment,” PhD Thesis, (UIUC, Illinois, 2012).

    Google Scholar 

  137. J. Beringer et al. (Particle Data Group) Review of Particle Physics, Phys. Rev. D 86, 010001 (2012).

    Google Scholar 

  138. D. H. Wright, S. Ahmad, D. S. Armstrong, G. Azuelos, W. Bertl, M. Blecher, C. Q. Chen, P. Depommier, B. C. Doyle, T. von Egidy, T. P. Gorringe, P. Gumplinger, M. D. Hasinoff, D. Healey, G. Jonkmans, A. J. Larabee, J. A. MacDonald, S. C. McDonald, M. Munro, J.-M. Poutissou, R. Poutissou, B. C. Robertson, D. G. Sample, E. Saettler, C. N. Sigler, G. N. Taylor, and N. S. Zhang, “Measurement of the induced pseudoscalar coupling using radiative muon capture on hydrogen,” Phys. Rev. C 57, 373–390 (1998).

    Article  ADS  Google Scholar 

  139. V. A. Andreev, R. M. Carey, V. A. Ganzha, A. Gardestig, T. Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, K. Kubodera, B. Lauss, M. Levchenko, K. R. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, F. Myhrer, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, V. Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, and P. Winter, “Muon capture on the deuteron—the MuSun experiment. ” arXiv:1004. 1754v 1 [nucl-exp].

  140. I. T. Wang, “Muon capture by deuterons,” Phys. Rev. 139, 1539–1544 (1965).

    Article  ADS  Google Scholar 

  141. G. Bardin, J. Duclos, J. Martino, A. Bertin, M. Capponi, M. Piccinini, and A. Vitale, “A measurement of the muon capture rate in liquid deuterium by the lifetime technique,” Nucl. Phys. A 453, 591–604 (1986).

    Article  ADS  Google Scholar 

  142. M. Cargnelli, et al. in Proceedings of the XXIII Yamada Conference on Nuclear Weak Processes and Nuclear Structure, Osaka, 1989, Ed. by M. Morita, E. Ejiri, H. Ohtsubo, and T. Sato (World Sci., Singapore, 1989), p. 115.

  143. N. Tatara, Y. Kohyama, and K. Kubodera, “Weak interaction processes on deuterium: Muon capture and neutrino reactions,” Phys. Rev. C 42, 1694–1717 (1990).

    Article  ADS  Google Scholar 

  144. J. Adam, E. Truhlik, S. Ciechanowicz, and K. M. Schmitt, “Muon capture in deuterium and the meson exchange current effect,” Nucl. Phys. A 507, 675–697 (1990).

    Article  ADS  Google Scholar 

  145. S. Weinberg, “Color and electroweak forces as a source of quark and lepton masses,” Phys. Lett. B 102, 401–407 (1981).

    Article  ADS  Google Scholar 

  146. T. S. Park, L. E. Marcucci, R. Schiavilla, M. Viviani, A. Kievsky, S. Rosati, K. Kubodera, D.-P. Min, and M. Rho, “Parameter-free effective field theory calculation for the solar proton-fusion and hep processes,” Phys. Rev. C 67, 055206 (2003).

    Article  ADS  Google Scholar 

  147. E. A. Vesman, S. S. Gershtein, V. P. Dzhelepov, P. F. Ermolov, and V. V. Fil’chenkov, “Discovery. Law of resonant formation of muonic deuterium molecules (priority of 1965),” Byulleten’ “Otkrytiya i Izobreteniya” (1988); Diploma No. 46.

    Google Scholar 

  148. S. I. Vinitskii, L. I. Ponomarev, I. V. Puzynin, T. P. Puzynina, L. N. Somov, and M. P. Faifman, “Resonant formation of μ-mesic molecules of hydrogen,” JETP. 47, 44 (1978).

    Google Scholar 

  149. D. V. Balin, V. A. Ganzha, S. M. Kozlov, E. M. Maev, G. E. Petrov, M. A. Soroka, G. N. Schapkin, G. G. Semenchuk, V. A. Trofimov, A. A. Vasiliev, A. A. Vorobyov, N. I. Voropaev, C. Petitjean, B. Gartner, B. Lauss, J. Marton, J. Zmeskal, T. Case, K. M. Crowe, P. Kammel, F. J. Hartmann, and M. P. Faifman, “High precision study of muon catalyzed fusion in D2 and HD gases,” Phys. Part. Nucl. 42, 185–214 (2011).

    Article  Google Scholar 

  150. L. I. Men’shikov, L. I. Ponomarev, T. A. Strizh, and M. P. Faifman, “Resonant formation of ddμ muonic molecules,” JETP 65, 656 (1987).

    Google Scholar 

  151. V. P. Dzhelepov, V. G. Zinov, S. A. Ivanovskii, S. B. Karpov, A. D. Konin, A. I. Malyshev, L. Martsish, D. G. Merkulov, A. I. Rudenko, V. V. Fil’chenkov, and O. A. Yurin, “Measurement of the temperature dependence of the rate at which muonic molecules of deuterium are formed for various spin states of the dμ atoms at high deuterium density,” JETP 74, 589 (1992).

    Google Scholar 

  152. N. I. Voropaev, D. V. Balin, W. H. Breunlich, T. Case, K. M. Crowe, M. P. Faifman, B. Gartner, F. J. Hartmann, P. Kammel, B. Lauss, E. M. Maev, V. E. Markushin, C. Petitjean, G. E. Petrov, G. N. Schapkin, G. G. Semenchuk, A. A. Vorobyov, and J. Zmeskal, “μCF experiments in D2 and HD gases—final results,” Hyperfine Interact. 138, 331–341 (2001).

    Article  ADS  Google Scholar 

  153. A. A. Vorobyov, P. Ackerbauer, A. Adamczak, V. A. Andreev, D. V. Balin, G. A. Beer, W. H. Breunlich, T. Case, K. M. Crowe, H. Daniel, J. Deutsch, P. U. Dick, A. Dijksman, J. Egger, T. von Egidy, M. P. Faifman, A. A. Fetisov, V. A. Ganzha, J. Govaerts, V. V. Gusev, F. J. Hartmann, W. D. Herold, P. Kammel, A. G. Krivshich, B. Lauss, E. M. Maev, V. E. Markushin, J. Martino, J. Marton, L. I. Menshikov, M. Muhlbauer, C. Petitjean, G. E. Petrov, L. I. Ponomarev, R. Prieels, W. Prymas, G. N. Schapkin, W. Schops, W. Schott, G. G. Semenchuk, Yu. V. Smirenin, and N. I. Voropaev, “Final results on the μ3He-capture experiment and perspectives for μpcapture studies,” Hyperfine Interact. 118, 13–24 (1999).

    Article  ADS  Google Scholar 

  154. O. A. Zaimidoroga, M. M. Kulyukin, B. Pontecorvo, R. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupko-Sitnikov, and Yu. A. Scherbakov, “Measurement of the total muon capture rate in 3He,” Phys. Lett. 6, 100–102 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Filchenkov.

Additional information

Original Russian Text © V.V. Filchenkov, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filchenkov, V.V. Physical applications of muon catalysis: Muon capture in hydrogen. Phys. Part. Nuclei 47, 591–626 (2016). https://doi.org/10.1134/S1063779616040055

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040055

Navigation