Skip to main content
Log in

Feasibility study of heavy ion physics program at NICA

  • The issue is devoted to the 60th anniversary of the Joint Institute for Nuclear Research
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

There are strong experimental and theoretical evidences that in collisions of heavy ions at relativistic energies nuclear matter undergoes a phase transition to the deconfined state—Quark Gluon Plasma. The caused energy region of such transition was not found at high energy at SPS and RHIC and search for this energy is shifted to lower energies, which will be covered by the future NICA (Dubna), FAIR (Darmstadt) facilities and BES II at RHIC. Fixed target and collider experiments at the NICA facility will work at the energy range from a few AGeV up to \(\sqrt {\;{S_{NN}}} \; = \;11\;GeV\) GeV and will study the most interesting area on the nuclear matter phase diagram. The most remarkable results were observed in the study of collective phenomena occurring in the early stage of nuclear collisions. Investigation of the collective flow will provide information on Equation of State (EoS) for nuclear matter. Study of the Event-by-Event fluctuations and correlations can give us signals of critical behavior of the system. Femtoscopy analysis provides the space-time history of the collisions. Also, it was found that baryon stopping power revealing itself as a “wiggle” in excitation function of curvature of the (net)proton rapidity spectrum relates to the order of the phase transition. The available observations of an enhancement of dilepton rates at low invariant masses may serve as a signal of the chiral symmetry restoration in hot and dense matter. Due to this fact, measurements of the dilepton spectra are considered to be an important part of the NICA physics program. The study of strange particles and hypernuclei production gives additional information on the EoS and “strange” axis of the QCD phase diagram. In this paper a feasibility of the considered investigations is shown by the detailed Monte Carlo simulations applied to the planned experiments (BM@N, MPD) at NICA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NICA White Paper. http://nica.jinr.ru, free access.

  2. I. Arsene, et al., “Quarkgluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment,” Nucl. Phys. A 757, 1–27 (2005). First Three Years of Operation of RHIC.

    Article  ADS  Google Scholar 

  3. B. B. Back, et al., “The perspective on discoveries at RHIC,” Nucl. Phys. A 757, 28–101 (2005). First Three Years of Operation of RHIC.

    Article  ADS  Google Scholar 

  4. J. Adams, et al., “Experimental and theoretical challenges in the search for the quarkgluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions,” Nucl. Phys. A 757, 102–183 (2005). First Three Years of Operation of RHIC.

    Article  ADS  Google Scholar 

  5. K. Adcox, et al., “Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration,” Nucl. Phys. A 757, 184–283 (2005). First Three Years of Operation of RHIC.

    Article  ADS  Google Scholar 

  6. C. Alt, et al., “Pion and kaon production in central Pb + Pb collisions at 20-A and 30-A-GeV: Evidence for the onset of deconfinement,” Phys. Rev. C 77, 024903 (2008).

    Article  ADS  Google Scholar 

  7. Kh. U. Abraamyan, et al., “The MPD detector at the NICA heavy-ion collider at JINR,” Nucl. Instrum. Meth. A 628, 99–102 (2011).

    Article  ADS  Google Scholar 

  8. Arthur M. Poskanzer and S. A. Voloshin, “Methods for analyzing anisotropic flow in relativistic nuclear collisions,” Phys. Rev. C 58, 1671–1678 (1998).

    Article  ADS  Google Scholar 

  9. L. Adamczyk, et al., “Beamenergy dependence of the directed flow of protons, antiprotons, and pions in Au+Au collisions, Phys. Rev. Lett. 112 16, 162301 (2014).

    Article  ADS  Google Scholar 

  10. V. P. Konchakovski, W. Cassing, Yu. B. Ivanov, and V. D. Toneev, “Examination of the directed flow puzzle in heavy-ion collisions,” Phys. Rev. C 90 1, 014903 (2014).

    Article  ADS  Google Scholar 

  11. W. Cassing, “QCD thermodynamics and confinement from a dynamical quasiparticle point of view,” Nucl. Phys. A 791, 365–381 (2007); W. Cassing and E. L. Bratkovskaya. “Parton transport and hadronization from the dynamical quasiparticle point of view,” Phys. Rev. C78, 034919, (2008); W. Cassing and E. L. Bratkovskaya. “Parton-hadron-string dynamics: An off-shell transport approach for relativistic energies,” Nucl. Phys. A 831, 215–242 (2009).

    Article  ADS  Google Scholar 

  12. Yu. B. Ivanov, V. N. Russkikh, and V. D. Toneev, “Relativistic heavy-ion collisions within 3-fluid hydrodynamics: Hadronic scenario,” Phys. Rev. C 73, 044904 (2006).

    Article  ADS  Google Scholar 

  13. V. P. Konchakovski, E. L. Bratkovskaya, W. Cassing, et al., “Rise of azimuthal anisotropies as a signature of the Quark-Gluon-Plasma in relativistic heavy-ion collisions,” Phys. Rev. C 85, 011902 (2012).

    Article  ADS  Google Scholar 

  14. W. Cassing and E. L. Bratkovskaya, “Hadronic and electromagnetic probes of hot and dense nuclear matter,” Phys. Rept. 308, 65–233 (1999).

    Article  ADS  Google Scholar 

  15. E. L. Bratkovskaya, W. Cassing, and Horst Stoecker, “Open charm and charmonium production at RHIC,” Phys. Rev. C 67, 054905 (2003).

    Article  ADS  Google Scholar 

  16. E. L. Bratkovskaya, M. Bleicher, M. Reiter, et al., “Strangeness dynamics and transverse pressure in relativistic nucleus-nucleus collisions,” Phys. Rev. C 69, 054907 (2004).

    Article  ADS  Google Scholar 

  17. O. Linnyk, E. L. Bratkovskaya, and W. Cassing, “Open and hidden charm in proton-nucleus and heavy-ion collisions,” Int. J. Mod. Phys. E 17, 1367–1439 (2008).

    Article  ADS  Google Scholar 

  18. V. P. Konchakovski, M. I. Gorenstein, E. L. Bratkovskaya, and W. Greiner, “Fluctuations and correlations in nucleus-nucleus collisions within transport models,” J. Phys. G 37, 073101 (2010).

    Article  ADS  Google Scholar 

  19. E. L. Bratkovskaya, W. Cassing, and O. Linnyk, “Low mass dilepton production at ultrarelativistic energies,” Phys. Lett. B 670, 428–433 (2009).

    Article  ADS  Google Scholar 

  20. Wang Gang, “Correlations relative to the reaction plane at the relativistic heavy ion collider based on transverse deflection of spectator neutrons,” Ph. D. Thesis, Gang Wang, Kent State University, 2006.

    Google Scholar 

  21. D. Kharzeev, “Parity violation in hot QCD: Why it can happen, and how to look for it,” Phys. Lett. B 633, 260–264 (2006).

    Article  ADS  Google Scholar 

  22. S. A. Voloshin, “Probe for the strong parity violation effects at RHIC with three particle correlations,” Indian J. Phys. 85, 1103–1107 (2011). 0806. 0029.

    Article  ADS  Google Scholar 

  23. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, “The effects of topological charge change in heavy ion collisions:’ Event by event P and CP violation’,” Nucl. Phys. A 803, 227–253 (2008).

    Article  ADS  Google Scholar 

  24. V. Skokov, A. Yu. Illarionov, and V. Toneev, “Estimate of the magnetic field strength in heavy-ion collisions,” Int. J. Mod. Phys. A 24, 5925–5932 (2009).

    Article  ADS  Google Scholar 

  25. V. Voronyuk, V. D. Toneev, W. Cassing, et al., “(Electro-) Magnetic field evolution in relativistic heavy ion collisions,” Phys. Rev. C 83, 054911 (2011).

    Article  ADS  Google Scholar 

  26. S. A. Voloshin, “Parity violation in hot QCD: How to detect it,” Phys. Rev. C 70, 057901 (2004).

    Article  ADS  Google Scholar 

  27. L. Adamczyk, et al. (STAR collaboration), “Beamenergy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC,” Phys. Rev. Lett. 113, 052302 (2014).

    Article  ADS  Google Scholar 

  28. Adam Bzdak, Volker Koch, and Jinfeng Liao, “Remarks on possible local parity violation in heavy ion collisions,” Phys. Rev. C 81, 031901 (2010).

    Article  ADS  Google Scholar 

  29. V. D. Toneev, V. Voronyuk, E. L. Bratkovskaya, et al., “Theoretical analysis of a possible observation of the chiral magnetic effect in Au + Au collisions within the RHIC beam energy scan program,” Phys. Rev. C 85, 034910 (2012).

    Article  ADS  Google Scholar 

  30. V. D. Toneev, V. P. Konchakovski, V. Voronyuk, et al., “Event-by-event background in estimates of the chiral magnetic effect,” Phys. Rev. C 86, 064907 (2012).

    Article  ADS  Google Scholar 

  31. Yu. B. Ivanov, “Alternative scenarios of relativistic heavy-ion collisions: I. Baryon stopping,” Phys. Rev. C 87, 064904 (2013).

    Article  ADS  Google Scholar 

  32. J. Cleymans, “Maximal net baryon density in the energy region covered by NICA,” Part. Nucl. Lett. 8, 6–10 (2011).

    Google Scholar 

  33. H. Appelshauser, et al. (NA49 collaboration), “Baryon stopping and charged particle distributions in central Pb + Pb collisions at 158-GeV per nucleon,” Phys. Rev. Lett. 82, 2471–2475 (1999).

    Article  ADS  Google Scholar 

  34. Yu. B. Ivanov, V. N. Russkikh, and V. D. Toneev, “Relativistic heavy-ion collisions within 3-fluid hydrodynamics: Hadronic scenario,” Phys. Rev. C 73, 044904 (2006).

    Article  ADS  Google Scholar 

  35. Yu. B. Ivanov, “Alternative scenarios of relativistic heavy-ion collisions: II. Particle production,” Phys. Rev. C 87, 064905 (2013).

    Article  ADS  Google Scholar 

  36. Iu. A. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, “Estimation of the shear viscosity at finite net-baryon density from A + A collision data at = 7. 7–200 GeV,” Phys. Rev. C 91, 064901 (2015).

    Article  ADS  Google Scholar 

  37. M. I. Podgoretsky, “Interference correlations of identical pions: Theory,” Fiz. Elem. Chast. Atom. Yadra 20, 628–668 (1989), [in Russian].

    Google Scholar 

  38. B. Lorstad, “Boson interferometry—a review of highenergy data and its interpretation,” Int. J. Mod. Phys. A 4, 2861–2896 (1989).

    Article  ADS  Google Scholar 

  39. D. H. Boal, C. K. Gelbke, and B. K. Jennings, “Intensity interferometry in subatomic physics,” Rev. Mod. Phys. 62, 553–602 (1990).

    Article  ADS  Google Scholar 

  40. Urs Achim Wiedemann and Ulrich W. Heinz, “Particle interferometry for relativistic heavy ion collisions,” Phys. Rept. 319, 145–230 (1999).

    Article  ADS  Google Scholar 

  41. T. Csorgo, “Particle interferometry from 40-MeV to 40-TeV,” Heavy Ion Phys. 15, 1–80 (2002).

    Article  MathSciNet  Google Scholar 

  42. R. Lednicky, “Correlation femtoscopy of multiparticle processes,” Phys. Atom. Nucl. 67, 72–82 (2004).

    Article  ADS  Google Scholar 

  43. Lisa Michael Annan, Pratt Scott, Ron Soltz, and Urs Wiedemann, “Femtoscopy in relativistic heavy ion collisions,” Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005).

    Article  ADS  Google Scholar 

  44. R. Lednicky and V. L. Lyuboshitz, “Influence of final state interaction on correlations of two particles with nearly equal momenta,” Sov. J. Nucl. Phys. 35, 770 (1982).

    Google Scholar 

  45. John Adams, et al., “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions,” Nucl. Phys. A 757, 102–183 (2005).

    Article  ADS  Google Scholar 

  46. I. M. Podgoretsky, “On the comparison of identical pion correlations in different reference frames,” Sov. J. Nucl. Phys. 37, 272 (1983).

    Google Scholar 

  47. T. Csorgo and S. Pratt, “Structure of the peak in Bose- Einstein correlations,” Proc. of the Relativistic Heavy- Ion Physics at Present and Future Accelerators, Budapest, 1991, p. 75.

    Google Scholar 

  48. Dirk H. Rischke and Miklos Gyulassy, “The time delay signature of quark—gluon plasma formation in relativistic nuclear collisions,” Nucl. Phys. A 608, 479–512 (1996).

    Article  ADS  Google Scholar 

  49. F. Antinori, et al., “Centrality dependence of the expansion dynamics in Pb Pb collisions at 158-A-GeV/c,” J. Phys. G 27, 2325–2344 (2001).

    Article  ADS  Google Scholar 

  50. M. A. Lisa, et al., “Bombarding energy dependence of pi-minus interferometry at the Brookhaven AGS,” Phys. Rev. Lett. 84, 2798–2802 (2000).

    Article  ADS  Google Scholar 

  51. L. Ahle, et al., “System, centrality, and transverse mass dependence of two pion correlation radii in heavy ion collisions at 11. 6-A-GeV and 14. 6-A-GeV,” Phys. Rev. C66, 054906 (2002).

    ADS  Google Scholar 

  52. S. Kniege, et al., “Rapidity and transverse momentum dependence of pi- pi- Bose-EinsNN stein correlations measured at 20-A-GeV, 30-A-GeV, 40-A-GeV, 80-A-GeV and 158-A-GeV beam energy,” J. Phys. G30, S1073–S1078 (2004).

    Article  ADS  Google Scholar 

  53. D. Adamova, et al., “Beam energy and centrality dependence of two pion Bose-Einstein correlations at SPS energies,” Nucl. Phys. A 714, 124–144 (2003).

    Article  ADS  Google Scholar 

  54. S. S. Adler, et al., “Bose-Einstein correlations of charged pion pairs in Au + Au collisions at S NN= 200 GeV,” Phys. Rev. Lett. 93, 152302 (2004).

    Article  ADS  Google Scholar 

  55. K. Adcox, et al., “Transverse mass dependence of two pion correlations in Au+Au collisions at S NN= 130 GeV,” Phys. Rev. Lett. 88, 192302 (2002).

    Article  ADS  Google Scholar 

  56. B. B. Back, et al., “Transverse momentum and rapidity dependence of HBT correlations in Au + Au collisions at S NN= 62. 4 GeV and 200 GeV,” Phys. Rev. C 73, 031901 (2006).

    Article  ADS  Google Scholar 

  57. C. Adler, et al., “Pion interferometry of S NN= 130 GeV Au + Au collisions at RHIC,” Phys. Rev. Lett. 87, 082301 (2001).

    Article  ADS  Google Scholar 

  58. J. Adams, et al., “Pion interferometry in Au+Au collisions at = 200 GeV,” Phys. Rev. C 71, 044906 (2005).

    Article  ADS  Google Scholar 

  59. Wojciech Florkowski, Wojciech Broniowski, Mikolaj Chojnacki, and Adam Kisiel, “Hydrodynamics and perfect fluids: Uniform description of soft observables in Au+Au collisions at RHIC,” Proc. 38th International Symposium on Multiparticle Dynamics (ISMD08), 2008, pp. 109–113.

    Google Scholar 

  60. Scott Pratt, “Resolving the HBT puzzle in relativistic heavy ion collision,” Phys. Rev. Lett. 102, 232301 (2009).

    Article  ADS  Google Scholar 

  61. M. A. Stephanov, “QCD phase diagram and the critical point,” Prog. Theor. Phys. Suppl. 153, 139–156 (2004).

    Article  ADS  Google Scholar 

  62. R. Lednicky, “Femtoscopic search for the phase transition,” Nucl. Phys. Proc. Suppl. 198, 43–45 (2010).

    Article  ADS  Google Scholar 

  63. Z. Chajecki, T. D. Gutierrez, M. A. Lisa, and M. Lopez-Noriega, “AA versus PP (and dA): A Puzzling scaling in NBT and RHIC,” Proc. 21st Winter Workshop on Nuclear Dynamics, 2005.

    Google Scholar 

  64. R. Lednick’y, V. L. Lyuboshitz, B. Erazmus, and D. Nouais, “How to measure which sort of particles was emitted earlier and which later?,” Physics Letters B 373, 30–34 (1996).

    Article  ADS  Google Scholar 

  65. J. Adams, et al., “Pion interferometry in Au+Au collisions at S(NN)**(1/2) = 200-GeV,” Phys. Rev. C 71, 044906 (2005).

    Article  ADS  Google Scholar 

  66. Lukasz Kamil Graczykowski, “Pion femtoscopy measurements in ALICE at the LHC,” EPJ Web Conf. 71, 00051 (2014).

    Article  Google Scholar 

  67. D. Brown and P. Danielewicz, “Imaging of sources in heavy-ion collisions,” Phys. Lett. B 398, 252–258 (1997).

    Article  ADS  Google Scholar 

  68. D. Brown and P. Danielewicz, “Optimized discretization of sources imaged in heavy ion reactions,” Phys. Rev. C 57, 2474–2483 (1998).

    Article  ADS  Google Scholar 

  69. Tetsuo Hatsuda and Houng Lee Su. “QCD sum rules for vector mesons in nuclear medium,” Phys. Rev. C 46, 34–38 (1992).

  70. R. Rapp, G. Chanfray, and J. Wambach, “Medium modifications of the rho meson at CERN SPS energies,” Phys. Rev. Lett. 76, 368–371 (1996).

    Article  ADS  Google Scholar 

  71. G. E. Brown and Mannque Rho, “Scaling effective Lagrangians in a dense medium,” Phys. Rev. Lett. 66, 2720–2723 (1991).

    Article  ADS  Google Scholar 

  72. Jorgen Randrup and Jean Cleymans, “Maximum freeze-out baryon density in nuclear collisions,” Phys. Rev. C 74, 047901 (2006).

    Article  ADS  Google Scholar 

  73. V. Vasendina, V. Jejer, V. Kolesnikov, et al., “Study of the MPD detector capabilities for electron-positron pair measurements at the NICA collider,” Phys. Part. Nucl. Lett. 10, 769–777 (2013).

    Article  Google Scholar 

  74. Johann Rafelski and Berndt Muller. “Strangeness production in the quark—gluon plasma,” Phys. Rev. Lett. 48, 1066 (1982): Erratum: Phys. Rev. Lett. 56, 2334 (1986).

    Article  ADS  Google Scholar 

  75. F. Antinori, et al., “Strangeness enhancement at mid-rapidity in Pb Pb collisions at 158-A-GeV/c: A comparison with VENUS and RQMD models,” Eur. Phys. J. C 11, 79–88 (1999).

    Article  ADS  Google Scholar 

  76. F. Antinori, et al., “Enhancement of hyperon production at central rapidity in 158-A-GeV/c Pb–Pb collisions,” J. Phys. G 32, 427–442 (2006).

    Article  ADS  Google Scholar 

  77. L. Adamczyk, et al., “Elliptic flow of identified hadrons in Au + Au collisions at S NN= 7. 7–62. 4 GeV,” Phys. Rev. C 88, 014902 (2013).

    Article  ADS  Google Scholar 

  78. M. Ilieva, V. Kolesnikov, Yu. Murin, et al., “Evaluation of the MPD detector capabilities for the study of the strangeness production at the NICA collider,” Phys. Part. Nucl. Lett. 12, 100–112 (2015).

    Article  Google Scholar 

  79. A. K. Kerman and M. S. Weiss, “Superstrange nuclei,” Phys. Rev. C 8, 408–410 (1973).

    Article  ADS  Google Scholar 

  80. B. I. Abelev, “Observation of an antimatter hypernucleus,” Science 328, 58–62 (2010).

    Article  ADS  Google Scholar 

  81. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, “Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions,” Phys. Lett. B 697, 203–207 (2011).

    Article  ADS  Google Scholar 

  82. L. McLerran and R. D. Pisarski, “Phases of cold, dense quarks at large N(c),” Nucl. Phys. A 796, 83–100 (2007).

    Article  ADS  Google Scholar 

  83. V. Voronyuk, V. D. Toneev, S. A. Voloshin, and W. Cassing, “Charge-dependent directed flow in asymmetric nuclear collisions,” Phys. Rev. C 90, 064903 (2014).

    Article  ADS  Google Scholar 

  84. O. V. Rogachevsky, A. S. Sorin, and O. V. Teryaev, “Chiral vortaic effect and neutron asymmetries in heavy-ion collisions,” Phys. Rev. C 82, 054910 (2010).

    Article  ADS  Google Scholar 

  85. M. Baznat, K. Gudima, A. Sorin, and O. Teryaev, “Helicity separation in heavy-ion collisions,” Phys. Rev. C 88, 061901 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Batyuk.

Additional information

The article is published in the original. On behalf of the BM@N and MPD Collaborations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batyuk, P.N., Kekelidze, V.D., Kolesnikov, V.I. et al. Feasibility study of heavy ion physics program at NICA. Phys. Part. Nuclei 47, 540–566 (2016). https://doi.org/10.1134/S1063779616040031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616040031

Navigation